Theoretical Computer Science

Electronic Notes in Theoretical Computer Science

[Home Page of ENTCS] [Volume/Issue List of ENTCS] [Author Index of ENTCS]

X

HOOTS II Second Workshop on Higher-Order Operational Techniques in

Semantics
Stanford University, December 8-12, 1997
Guest Editors: Andrew Gordon, Andrew Pitts and Carolyn Talcott

[Table of Contents] of Volume 10

0

ELSEVIER
Mirror sites: www.europe | www.usa | www.japan

© Website Copyright 1999, Elsevier Science, All rights reserved.

DISTRIBUTION STATEMENT A
Approved for Public Release
Vistribution Unlimited

DTIC QUALITY INSPECTED 8

000 80406661




N A - TR B R N R S RN I RN I T T o Ve O P .9

REPORT. DOCUMENTATION PAGE oM o o or88

Public reporting burden for this collection of information is eslimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gethering and msintaining the dala needed,:nd completing and reviewing the collection of information. Send comments regarding this burden eatimate or any other aspect of this
collection of information, induding suggestions for reducing this burden, 1o Washington Headquarters Senvices, Diraclorale for Information Operations and Reports, 1215 Jafferson
Davis Highway, Suite 1204, Adington, VA 22202-4302, and to the Office of Managemaent and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USEONLY (Leave - |2. HEPQ;%DATE 3. REPORT TYPE AND DATES COVERED
Blank) ) 19 ‘:tr\aj 30 Sep 9% - 32 &Bﬂ 98
4. TMEANDSUBTILE HOOTS TC  Second (WJovrgShe 0 5. FUNDING NUMBERS

on U—éw-Oro‘m. Oparatirnal Techm "em | ©: N00O14-98-1-0201
e amBiEs - (Wuceedu)vxﬁs\

6. AUTHORS (T itovrs ) T
Andrecds Gordow, Qudisw Pl @ Carolyn Talestt

7. PERFORMING ORGANIZAT|ON:NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
. NUMBER

SlamGord  Univevsity | Nk

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING AGENCY
- REPORT NUMBER
O NI N R
11. SUPPLEMENTARYNOTES - The groccedimas ahe P ublished w He Sorres

?_th:l—‘rov\ic Mo‘fe:s in Theorebicat Comqwj-er Sciemce as Volume (0
and are available ot htps i waw,Clsevier. M Mocatelentcs [uolume (0. kiml

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for publiéj release; distribution unlimited.

13. ABSTRACT (Maximum 200 woirls)

This issue of ENTCS is an unrefereed conference record of talks
presented at the Second Workshop on Higher Order Operational
Techniques in Semantics held at Stanford University, December 8-11,
1997. The meeting was organised by A. Gordon, A. Pitts and C. Talcott
with generous sponsorship from Harlequin Ltd, NSF and ONR. The study
of operational techniques for higher-order languages has much research
activity going on in distinct communities, including the concurrency,
functional programming and type theory communities. The purpose of
the workshop was to bring researchers from these communities together
to discuss current trends in the theory of operational semantics, its
application to higher-order languages and its connection with more
established semantic techniques.

14. SUBJECT TERMS ' 15. NUMBER OF PAGES
Semantics. J ﬂzﬁé er Ordey 16. PRICE CODE -
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION [ 19. SECURITY CLASSIFICATION | 20. LIMITATION OF
OF REPORT : OF THIS PAGE OF ABSTRACT ~ _ ABSTRACT
UNCLASSIFIED ; UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 ' Standard Form 208 (Rev. 2-89)

Prescribed by ANSI Std. Z39-1
298-102




Theoretical Computer Science
Electronic Notes in Theoretical Computer Science

[Home Page of ENTCS] [Volume/Issue List of ENTCS] [Author Index of ENTCS]

Table of Contents of Volume 10

Preface Volume 10
Andrew Gordon, Andrew Pitts and Carolyn Talcott
[Abstract]

Similarity and Bisimilarity for Countable Non-Determinism and Higher-Order Functions
(Extended Abstract)

Soren Lassen and Corin Pitcher

[Abstract] [Full text] (PostScript 631.2 Kb)

Parametric Polymorphism and Operational Equivalence
(Preliminary Version)

Andy Pitts

[Abstract] [Full text] (PostScript 756.3 Kb)

Operational Subsumption, an Ideal Model of Subtyping
Laurent Dami
[Abstract] [Full text] (PostScript 673.1 Kb)

An Operational Understanding of Bisimulation from Open Maps
Glynn Winskel
[Abstract]

Premonoidal categories and flow graphs
Alan Jeffrey
[Abstract]

A Type-theoretic Description of Action Calculi

Philippa Gardner
[Abstract]

Correctness of Monadic State: An Imperative Call-by-Need Calculus
Zena Ariola and Amr Sabry
[Abstract]

Monadic Type Systems: Pure Type Systems for Impure Settings




(Preliminary Report)
Gilles Barthe , John Hatcliff and Peter Thiemann
[Abstract] [Full text] (PostScript 1093.3 Kb)

Adapting Big-Step Semantics to Small-Step Style: Coinductive Interpretations and

‘‘Higher-Order’’ Derivations
Husain Ibraheem and David A. Schmidt
[Abstract] [Full text] (PostScript 564.9 Kb)

An Operational Semantics Framework Supporting the Incremental Construction of

Derivation Trees
Allen Stoughton
[Abstract] [Full text] (PostScript 468.5 Kb)

Computing with Contexts: A simple approach
Dave Sands
[Abstract] [Full text] (PostScript 618.6 Kb)

Flow Logic and Operational Semantics
Flemming Nielson and Hanne Riis Nielson
[Abstract] [Full text] (PostScript 562.5 Kb)

An Introduction to History Dependent Automata

Ugo Montanari and Marco Pistore
[Abstract] [Full text] (PostScript 778.1 Kb)

Can Actors and pi-Agents Live Together?
Ugo Montanari and Carolyn Talcott
[Abstract] [Full text] (PostScript 447.1 Kb)

Specification Diagrams for Actor Systems
Scott Smith
[Abstract] [Full text] (PostScript 724.2 Kb)

Mobile Ambients
(Extended Abstract)
Luca Cardelli and Andrew D. Gordon

[Abstract] [Full text] (PostScript 290.4 Kb)

Secure Implementation of Channel Abstractions
Martin Abadi, Cedric Fournet and Georges Gonthier
[Abstract] [Full text] (PostScript 257.7 Kb)

Program Units as Higher-Order Modules
Matthew Flatt and Matthias Felleisen
[Abstract] [Full text] (PostScript 749.9 Kb)




Typed Closure Conversion for Recursively-Defined Functions
(Extended Abstract)

Greg Morrisett and Robert Harper

[Abstract] [Full text] (PostScript 412.3 Kb)

A Type System For Object Initialization In the Java Bytecode Language
Steve Freund and John Mitchell
[Abstract] [Full text] (PostScript 387.5 Kb)

Ei

Preface and Abstracts of Volume 10

Preface Volume 10
Andrew Gordon, Andrew Pitts and Carolyn Talcott

Abstract

This issue of ENTCS is an unrefereed conference record of talks presented at the Second
Workshop on Higher Order Operational Techniques in Semantics (HOOTS II) held at Stanford
University, December 8-11, 1997. The meeting was organised by A. Gordon, A. Pitts and C.
Talcott with generous sponsorship from Harlequin Ltd, NSF and ONR. The first HOOTS
workshop was held October 28-30, 1995 as part of the University of Cambridge Isaac Newton
Institute research programme on Semantics of Computation (July-Dec 1995).

The study of operational techniques for higher-order languages is now a thriving area, with much
research activity going on world-wide. An important open problem is a theory of program
equivalence for languages with higher-order features, including functions and objects. Techniques
for defining and reasoning about equivalence and other properties of higher-order programs have
emerged in distinct communities, including the concurrency, functional programming and type
theory communities. The purpose of the HOOTS workshops was to bring researchers from these
communities together to discuss current trends in the theory of operational semantics, its
application to higher-order languages and its connection with more established semantic
techniques.

Papers presented at HOOTS II covered a broad range of topics:

O techniques such as bisimulation and logical relations for reasoning about contextual
equivalence

O alternative program relations such as operational subsumption, and evaluation rules for
program contexts

O operational models including adaptation of big-step evaluation semantics to provide
capabilities of small-step and denotational semantics forms, flow graphs, and history
dependent automata

O higher-order programming calculi including: imperative call-by-need lambda calculus,
action calculi, process calculi for reasoning about mobility and security, interaction of actors




and pi calculus agents

O approaches to program analysis and verification, including: logics for control flow analysis,
monadic type systems, and diagramatic specification notation for actor systems;

O programming environment tools such a type systems for Java byte-code, and higher-order
program units for modularity.

Programs and participants lists for HOOTS I and II and other information about HOOTS, past and
future can be found here

[back to table of contents]

Similarity and Bisimilarity for Countable Non-Determinism and
Higher-Order Functions

(Extended Abstract)

Soren Lassen and Corin Pitcher

Abstract

This paper investigates operationally-based theories of a simply-typed functional programming
language with countable non-determinism. The theories are based upon lower, upper, and convex
variants of applicative similarity and bisimilarity, and the main result presented here is that these
relations are compatible. The differences between the relations are illustrated by simple examples,
and their continuity properties are discussed. It is also shown that, in some cases, the addition of
countable non-determinism to a programming language with finite non-determinism alters the
theory of the language.

[Full text] (PostScript 631.2 Kb)

[back to table of contents]

Parametric Polymorphism and Operational Equivalence

(Preliminary Version)
Andy Pitts

Abstract

Studies of the mathematical properties of impredicatively polymorphic types have for the most
part focused on the polymorphic lambda calculus of Girard-Reynolds, which is a calculus of total
polymorphic functions. This paper considers polymorphic types from a functional programming
perspective, where the partialness arising from the presence of fixpoint recursion complicates the
nature of potentially infinite (‘lazy’) datatypes. An operationally-based approach to Reynolds’




notion of relational parametricity is developed for an extension of Plotkin’s PCF with forall-types
and lazy lists. The resulting logical relation is shown to be a useful tool for proving properties of
polymorphic types up to a notion of operational equivalence based on Morris-style contextual
equivalence.

[Full text] (PostScript 756.3 Kb)

[back to table of contents]

Operational Subsumption, an Ideal Model of Subtyping
Laurent Dami

Abstract

In a previous paper we have defined a semantic preorder called operational subsumption, which
compares terms according to their error generation behaviour. Here we apply this abstract
framework to a concrete language, namely the Abadi-Cardelli object calculus. Unlike most
semantic studies of objects, which deal with typed equalities and therefore require explicitly typed
languages, we start here from a untyped world. Type inference is introduced in a second step,
together with an ideal model of types and subtyping. We show how this approach flexibly
accommodates for several variants, and finally propose a novel semantic interpretation of
structural subtyping as embedding-projection pairs.

[Full text] (PostScript 673.1 Kb)

[back to table of contents]
An Operational Understanding of Bisimulation from Open Maps

Glynn Winskel

Abstract

Models can be given to a range of programming languages combining concurrent and functional
features in which presheaf categories are used as the semantic domains (instead of the more usual
complete partial orders). Once this is done the languages inherit a notion of bisimulation from the
“‘open’’ maps associated with the presheaf categories. However, although there are
methodological and mathematical arguments for favouring semantics using presheaf
categories---in particular, there is a "domain theory" based on presheaf categories which
systematises bisimulation at higher-order---it is as yet far from a routine matter to read off an
"operational characterisation"; by this I mean an equivalent coinductive definition of bisimulation
between terms based on the operational semantics. I hope to illustrate the issues on a little
process-passing language. This is joint work with Gian Luca Cattani.

[back to table of contents]




Premonoidal categories and flow graphs
Alan Jeffrey

Abstract

We give two presentations of the semantics of programs: a categorical semantics based on Power
and Robinson’s symmetric premonoidal categories and Joyal, Street and Verity’s traced monoidal
categories, and a graphical semantics based on mixed control flow and data flow graphs. We show
how these semantics are related, and sketch how the 2-categorical versions could be used to give
an operational semantics for programs. The semantics is similar to Hasegawa’s presentation of
Milner and Gardner’s name-free action calculi.

[back to table of contents]

A Type-theoretic Description of Action Calculi
Philippa Gardner

Abstract

Action calculi, introduced by Milner, provide a framework for investigating models of interaction.
This talk will focus on the connection between action calculi and known concepts arising from
type theory. The aim of this work is to isolate what is distinctive about action calculi, and to
investigate the potential of action calculi as an underlying framework for many kinds of
computational behaviour.

The first part of the talk will introduce action calculi. In the second part, I’ll give a type-theoretic
account of action calculi, using the general binding operators of Aczel. I will discuss two
extensions: higher-order action calculi which correspond to Moggi’s commutative computational

lambda-calculus, and linear action calculi which correspond to the linear type theories of Barber
and Benton.

This talk is based on joint work with Andrew Barber, Masahito Hasegawa and Gordon Plotkin. If
time, I will also describe current work arising from the connections described above.

[back to table of contents]

Correctness of Monadic State: An Imperative Call-by-Need
Calculus

Zena Ariola and Amr Sabry

Abstract




The extension of Haskell with a built-in state monad combines mathematical elegance with
operational efficiency:
O Semantically, at the source language level, constructs that act on the state are viewed as
functions that pass an explicit store data structure around.
O Operationally, at the implementation level, constructs that act on the state are viewed as
statements whose evaluation has the side-effect of updating the implicit global store in place.

There are several unproven conjectures that the two views are consistent. Recently, we have noted
that the consistency of the two views is far from obvious: all it takes for the implementation to
become unsound is one judiciously-placed beta-step in the optimization phase of the compiler.
This discovery motivates the current paper in which we formalize and show the correctness of the
implementation of monadic state. For the proof, we first design a typed call-by-need language that
models the intermediate language of the compiler, together with a type-preserving compilation
map. Second, we show that the compilation is semantics-preserving by proving that the
compilation of every source axiom yields an observational equivalence of the target language.
Because of the wide semantic gap between the source and target languages, we perform this last
step using a number of intermediate languages. The imperative call-by-need lambda-calculus is of
independent interest for reasoning about system-level Haskell code providing services such as
memo-functions, generation of new names, etc, and is the starting point for reasoning about the
space usage of Haskell programs.

[back to table of contents]

Monadic Type Systems: Pure Type Systems for Impure Settings
(Preliminary Report)
Gilles Barthe , John Hatcliff and Peter Thiemann

Abstract

Pure type systems and computational monads are two parameterized frameworks that have proved
to be quite useful in both theoretical and practical applications. We join the foundational concepts
of both of these to obtain monadic type systems. Essentially, monadic type systems inherit the
parameterized higher-order type structure of pure type systems and the monadic term and type
structure used to capture computational effects in the theory of computational monads. We
demonstrate that monadic type systems nicely characterize previous work and suggest how they
can support several new theoretical and practical applications.

A technical foundation for monadic type systems is laid by recasting and scaling up the main
results from pure type systems (confluence, subject reduction, strong normalisation for particular
classes of systems, etc.) and from operational presentations of computational monads (notions of
operational equivalence based on applicative similarity, co-induction proof techniques).

We demonstrate the use of monadic type systems with case studies of several call-by-value and
call-by-name systems. Our framework allows to capture the restriction to value polymorphism in
the type structure and is flexible enough to accommodate extensions of the type system, e.g., with




higher-order polymorphism. The theoretical foundations make monadic type systems well-suited
as a typed intermediate language for compilation and specialization of higher-order, strict and
non-strict functional programs. The monadic structure guarantees sound compile-time
optimizations and the parameterized type structure guarantees sufficient expressiveness.

[Full text] (PostScript 1093.3 Kb)

[back to table of contents]

Adapting Big-Step Semantics to Small-Step Style: Coinductive
Interpretations and ‘‘Higher-Order’’ Derivations

Husain Ibraheem and David A. Schmidt

Abstract

We adapt Kahn-style (‘‘big-step’’) natural semantics to take on desirable aspects of small-step and
denotational semantics forms, more precisely: (i) the ability to express divergent computations; (ii)
the ability to reason about the (length of a) computation of a derivation; and (iii) the ability to
compute upon and reason about higher-order values. To accomplish these results, we extend the
classical, inductive interpretation of natural semantics with coinduction mechanisms and use
“‘negative’’ rules to express divergence. A simple reformatting of the syntax of derivations allows
a simple description of the ‘‘length’” of a derivation. Finally, the recoding of closure values into
denotational-semantics-like functions lets one embed derivations within closures that embed
within derivations; in this sense, the semantics becomes °‘higher order.”” Examples are given to
support the definitional developments.

[Full text] (PostScript 564.9 Kb)

[back to table of contents]

An Operational Semantics Framework Supporting the
Incremental Construction of Derivation Trees

Allen Stoughton

Abstract

We describe the current state of the design and implementation of Dops, a framework for
Deterministic OPerational Semantics that will support the incremental construction of derivation
trees, starting from term/input pairs. This process of derivation tree expansion may terminate with
either a complete derivation tree, explaining why a term/input pair evaluates to a particular output,
or with a blocked incomplete derivation tree, explaining why a term/input pair fails to evaluate to
an output; or the process may go on forever, yielding, in the limit, an infinite incomplete
derivation tree, explaining why a term/input pair fails to evaluate to an output.




The Dops metalanguage is a typed lambda calculus in which all expressions converge. Semantic
rules are specified by lambda terms involving resumptions, which are used by a rule to consume
the outputs of sub-evaluations and then resume the rule’s work. A rule’s type describes the number
and kinds of sub-evaluations that the rule can initiate, and indicates whether the rule can block.
The semantics of Dops is defined in an object language-independent manner as a small-step
semantics on concrete derivation trees: trees involving resumptions. These concrete derivation
trees can then be abstracted into ordinary derivation trees by forgetting the resumptions.

[Full text] (PostScript 468.5 Kb)

[back to table of contents]

Computing with Contexts: A simple approach
Dave Sands

Abstract

This article describes how the use of a higher-order syntax representation of contexts [due to A.
Pitts] combines smoothly with higher-order syntax for evaluation rules, so that definitions can be
extended to work over contexts. This provides "for free" -- without the development of any new
language-specific context calculi - evaluation rules for contexts which commute with hole-filling.
We have found this to be a useful technique for directly reasoning about operational equivalence.
A small illustration is given based on a unique fixed-point induction principle for a notion of
guarded context in a functional language.

[Full text] (PostScript 618.6 Kb)

[back to table of contents]

Flow Logic and Operational Semantics
Flemming Nielson and Hanne Riis Nielson
Abstract

Flow logic is a ‘‘fast prototyping’’ approach to program analysis that shows great promise of
being able to deal with a wide variety of languages and calculi for computation. However,
seemingly innocent choices in the flow logic as well as in the operational semantics may inhibit
proving the analysis correct. Our main conclusion is that environment based semantics is more
flexible than either substitution based semantics or semantics making use of structural congruences
(like alpha-renaming).

[Full text] (PostScript 562.5 Kb)

[back to table of contents]




An Introduction to History Dependent Automata
Ugo Montanari and Marco Pistore

Abstract

Automata (or labeled transition systems) are widely used as operational models in the field of
process description languages like CCS. There are however classes of formalisms that are not
modelled adequately by the automata. This is the case, for instance, of the pi-calculus, an
extension of CCS where channels can be used as values in the communications and new channels
can be created dynamically. Due to the necessity to represent the creation of new channels, infinite
automata are obtained in this case also for very simple agents and a non-standard definition of
bisimulation is required.

In this paper we present an enhanced version of automata, called history dependent automata, that
are adequate to represent the operational semantics of pi-calculus and of other history dependent
formalisms. We also define a bisimulation equivalence on history dependent automata, that
captures pi-calculus bisimulation.

[Full text] (PostScript 778.1 Kb)

[back to table of contents]

Can Actors and pi-Agents Live Together?
Ugo Montanari and Carolyn Talcott

Abstract
The syntax and semantics of actors and pi-agents is first defined separately, using a uniform,

“‘unbiased’” approach. New coordination primitives are then added to the union of the two calculi
which allow actors and pi-agents to cooperate.

[Full text] (PostScript 447.1 Kb)

[back to table of contents]
Specification Diagrams for Actor Systems

Scott Smith

Abstract

Traditional approaches to specifying distributed systems include temporal logic specification (e.g.
TLA), and process algebra specification (e.g. LOTOS). We propose here a new form of graphical




notation for specifying open distributed object systems. The primary design goal is to make a form
of notation for defining message-passing behavior that is expressive, intuitively understandable,
and that has a formal underlying semantics. We describe the language and its use through
presentation of a series of example specifications. We also give an operationally-based interaction
path semantics for specification diagrams.

[Full text] (PostScript 724.2 Kb)

[back to table of contents]

Mbobile Ambients

(Extended Abstract)
Luca Cardelli and Andrew D. Gordon

Abstract

There are two distinct areas of work in mobility: "mobile computing", concerning computation
that is carried out in mobile devices, and "mobile computation”, concerning mobile code that
moves between devices. These distinctions are destined to vanish. We aim to describe all aspects
of mobility within a single framework that encompasses mobile agents, the ambients where agents
interact and the mobility of the ambients themselves.

The main difficulty with mobile computation is not in mobility per se, but in the crossing of
administrative domains. Mobile programs must be equipped to navigate a hierarchy of domains, at
every step obtaining authorization to move further. Therefore, at the most fundamental level we
need to capture notions of locations, of mobility and of authorization to move.

We identify "mobile ambients" as a fundamental abstraction that generalizes both dynamic agents
and the static domains they must cross. From a formal point of view we develop a simple but
computationally powerful calculus that directly embodies domains and mobility (and little else).
The calculus forms the basis of a small-language/Java-library. We demonstrate the expressiveness
of the approach by a series of examples, including showing how a notion such as "crossing a
firewall" has a direct and analyzable interpretation.

[Full text] (PostScript 290.4 Kb)

[back to table of contents]

Secure Implementation of Channel Abstractions
Martin Abadi, Cedric Fournet and Georges Gonthier

Abstract




While cryptography is useful for distributed applications and fun even for application
programmers, cryptographic manipulations by and large do not belong in application code. Ideally,
application code should not be concerned with the details of key management, but should instead
rely on abstractions and services that encapsulate cryptographic protocols. In recent years, several
APIs (application program interfaces) for security have appeared, providing such abstractions and
services. Although there are substantial differences among these APIs, they generally offer the
promise of making application code more modular, simpler, and ultimately more robust.

In this talk we consider high-level abstractions that largely hide the difficulties of network security
from applications. These high-level abstractions support the pleasing illusion that all application
address spaces are on the same machine, and that a centralized operating system provides security
for them. In reality, these address spaces could be spread across a network, and security could
depend on several local operating systems and on cryptographic protocols across machines. Thus,
the application code need not be concerned with the security implications of distribution.

[Full text] (PostScript 257.7 Kb)

[back to table of contents]

Program Units as Higher-Order Modules
Matthew Flatt and Matthias Felleisen

Abstract

We have designed a new module language called ‘‘program units’’. Units support separate
compilation, independent module reuse, cyclic dependencies, hierarchical structuring, and
dynamic linking. In this paper, we present untyped and typed models of units.

[Full text] (PostScript 749.9 Kb)

[back to table of contents]

Typed Closure Conversion for Recursively-Defined Functions

(Extended Abstract)

Greg Morrisett and Robert Harper

Abstract

Much recent work on the compilation of statically typed languages such as ML relies on the
propagation of type information from source to object code in order to increase the reliability and
maintainabilty of the compiler itself and to improve the efficiency and verifiability of generated
code. To achieve this the program transformations performed by a compiler must be cast as
type-preserving translations between typed intermediate languages. In earlier work with Minamide




we studied one important compiler transformation, closure conversion, for the case of pure
simply-typed and polymorphic lambda-calculus. Here we extend the treatment of simply-typed .
closure conversion to account for recursively-defined functions such as are found in ML. We
consider three main approaches, one based on a recursive code construct, one based on a
self-referential data structure, and one based on recursive types. We discuss their relative
advantages and disadvantages, and sketch correctness proofs for these transformations based on
the method of logical relations.

[Full text] (PostScript 412.3 Kb)

[back to table of contents]

A Type System For Object Initialization In the Java Bytecode
Language

Steve Freund and John Mitchell

Abstract

In the standard Java implementation, a Java language program is compiled to Java bytecode and
this bytecode is then interpreted by the Java Virtual Machine. Since bytecode may be written by
hand, or corrupted during network transmission, the Java Virtual Machine contains a bytecode
verifier that performs a number of consistency checks before code is interpreted. As one-step
towards a formal specification of the verifier, we describe a precise specification of a subset of the
bytecode language dealing with object creation and initialization. '

[Full text] (PostScript 387.5 Kb)
[back to table of contents]
#ﬁ
ELSEVIER

Mirror sites: www.europe | www.usa | www.japan

© Website Copyright 1999, Elsevier Science, All rights reserved.




Electronic Notes in Theoretical Computer Science 10 (1998)
URL: http://www.elsevier.nl/locate/entcs/volumel0.html 21 pages

Similarity and Bisimilarity for Countable
Non-Determinism and Higher-Order Functions
(Extended Abstract)

Sgren B. Lassen!

University of Cambridge Computer Laboratory,
Pembroke Street, Cambridge CB2 3QG, United Kingdom
Soeren.Lassen@cl.cam.ac.uk

Corin S. Pitcher 2

Ozford University Computing Laboratory,
Wolfson Building, Parks Road, Ozford OX1 3QD, United Kingdom
Corin.Pitcher@comlab.ox.ac.uk

Abstract

This paper investigates operationally-based theories of a simply-typed functional
programming language with countable non-determinism. The theories are based
upon lower, upper, and convex variants of applicative similarity and bisimilarity,
and the main result presented here is that these relations are compatible. The
differences between the relations are illustrated by simple examples, and their con-
tinuity properties are discussed. It is also shown that, in some cases, the addition of
countable non-determinism to a programming language with finite non-determinism
alters the theory of the language.

Key words: lambda-calculus, applicative bisimilarity, countable
non-determinism.

1 Introduction

Non-deterministic programs are used in the study of concurrent systems, to
abstract from scheduling details, and in methodologies for program construc-
tion, where specifications are regarded as non-deterministic programs. In re-
cent years, several non-deterministic higher-order languages have been pro-
posed in the literature in these areas (see, e.g., [28,4]). Non-determinism is

1 Supported by a grant from the Danish Natural Science Research Council and grant num-
ber GR/L38356 from the UK EPSRC.
2 Partially supported by a UK EPSRC studentship.

(© 1998 Published by Elsevier Science B. V.




LASSEN AND PITCHER

also found as an integrated feature of the higher-order, operationally-based
semantic meta-language of action semantics [19]. In this paper we use op-
erational techniques to study the interaction between non-determinism and
higher-order functions in an idealised, minimal programming language.

We investigate three variants, lower, upper, and convex, of applicative sim-
ilarity and bisimilarity for a simply-typed functional programming language
with countable non-determinism. This builds upon work by Abramsky, Howe,
and Ong [1,11,12,21] for deterministic and finitely non-deterministic higher-
order calculi.

The variants of the relations correspond to the different constructions on
preorders that are used to characterise the lower, upper and convex pow-
erdomains. Their definitions refer to an inductively defined may convergence
relation between terms, and also a co-inductively defined may divergence pred-
icate on terms, for the upper and convex variants. For each variant there is
an applicative similarity preorder and an applicative bisimilarity equivalence
relation, both defined by co-induction. In addition, the applicative similarity
preorders determine mutual applicative similarity equivalence relations that
do not coincide with applicative bisimilarity. The proliferation of preorders
and equivalences reflects the conflicting requirements of different applications
for semantic theories of non-determinism. This complexity is not apparent
in the absence of non-determinism, because the nine relations defined here
collapse to just two.

It is of fundamental importance to know whether the relations are com-
patible, i.e., are they preserved by the constructors of the language? We
prove that this is the case for all of the relations, extending methods due to
Howe and Ong that were previously restricted to finitely non-deterministic
languages for the upper and convex variants. By the use of induction on the
derivation of a must convergence judgement (the complement of the may di-
vergence predicate) their methods are extended smoothly to a language with
countable non-determinism.

Must convergence is defined inductively via a finite collection of infinitary
rule schema, and so ordinal heights can be assigned to the derivation trees
of must convergence judgements in the usual way. Such trees have heights
strictly less than w for finite non-determinism, and heights strictly less than the
least non-recursive ordinal w{¥ for countable non-determinism. This allows
us to prove unwinding theorems for fixed points terms with respect to must
convergence: w-unwinding in the case of finitely non-deterministic terms, and
a more unusual w¥-unwinding for countably non-deterministic terms.

2 A Functional Language with Non-Determinism

The vehicle for the examples and results in this paper is a variant of the lan-
guage of Moggi’s computational lambda-calculus [17,7]. Within the computa-
tional lambda-calculus there is a distinction between values and computations

2




LASSEN AND PITCHER

that is enforced by the type system through a type-constructor for computa-
tion types. There are mechanisms for creating and composing the programs
of computation types.

The language is extended with an operator ?N to choose any natural num-
ber. The new construct is the sole source of non-determinism in the language,
and, because it is assigned an appropriate computation type, non-determinism
is restricted to the computation types. This restriction is convenient because
the mechanism for composing computations can be used to control when non-
determinism is resolved—an alternative is to incorporate both call-by-name
and call-by-value abstractions (see, e.g., [22]). In addition, although the ex-
amples presented here have analogues at function types, they are simpler at
computation types.

The types of the language are:

o,7 =:=unit | nat | 0 = 7 | P(0)

The computation types are those of the form P(c), and the remaining types
are called deterministic types.
The terms of the language are:

L M,N:=z| % | n|uop(M) | bop(M,N) |
if Lthen Melse N | Adz:0.M | M N |
[M] |letz:0< MinN |fixz:0.M | 7N

where z ranges over a countably infinite set of variables, n ranges over N, and
uop and bop range over a suitable set of symbols representing, respectively,
unary and binary primitive recursive functions, e.g., not, plus, leq. For the
sake of economy, booleans are represented by natural numbers: 0 for false,
and 1 for true. The primitive recursive functions are assumed to follow this
representation, and are denoted, e.g., (not) : N = N, (plus), (leq) : N> = N.
Variable binding terms follow the usual conventions for scope, a-conversion,
and type annotations to ensure uniqueness of typing. The notation M [N/z]
denotes the capture-free substitution of N for free occurrences of z in M. The
canonical terms are:

K:=x|n|Xx:0.M| [M]

The type assignment rules in figure 1 are based on those of the compu-
tational lambda-calculus. We follow the convention that environments are
partial functions, and that T, z : o is only defined when z is not in the domain
of T.

The sets of terms and canonical terms that are closed and well-typed are
Ezp and Can respectively. A term that is closed and well-typed is called a
program. The set of programs of type o is Ezp,.

3




LASSEN AND PITCHER

'tz:0 (I(z)=0) Tk *:unit I'n:nat (né€N)
' M :nat I'M:nat I'FN:nat
I'F uop (M) : nat I' - bop (M, N) : nat
I'-L:nat 'tM:0 T'FN:o
I'-if LthenMelseN : o

x:oF-M:71 'M:0—>71 'FN:o
'bX@x:oM:0—>T1 'FMN:71

'FM:o 'FM:Plo) T,z:0F N:P(7)
'+ [M]:P(o) I'kletz:0«< MinN :P(7)

I'z:P(o) - M :P(o)

N -
T+ fixz : P(0). M : P(0) [ F7N: P(nat)

Fig. 1. Type Assignment

Many of the examples that we give do not depend on the existence of
distinct canonical programs at a base type, and in such cases we use the unit
type in preference to nat.

The operational semantics is presented as an inductively defined evaluation
relation ™, called may convergence, between programs and canonical closed
terms. The rules are shown in figure 2. The may convergence relation is not a
partial function because of the rule that allows 7N to converge to any natural
number.

In contrast to the situation for deterministic programs, the divergent (non-
terminating) behaviour of a non-deterministic program is not determined by
its convergent behaviour. Following [6,8,18] we define a may divergence predi-
cate ™ on programs by co-induction. The may divergence rules are given in
figure 3. The symbol (—) at the side of each rule is used to indicate that the
may divergence predicate is the greatest fixed point of the monotone function
determined by the rules. Note that there is some redundancy in the may di-
vergence rules, because it can be shown that programs of deterministic types
cannot diverge.

Examples 2.1 and 2.2 highlight properties of the programming language
that are relevant in the sequel.

Example 2.1 The construct for sequencing computations in the computa-
tional lambda-calculus provides an additional degree of control over the resolu-
tion of non-determinism. For example, a call-by-value abstraction is definable
at computation types (where y is fresh for M ):

)\”x:a.Mti—-ef)\y:P(a).letm:a<:yinM

The call-by-value abstraction exhibits (weak) call-time choice, i.e., a non-
4




LASSEN AND PITCHER

K | K (K € Can)
M ™ n M ™% n, N ™% ny
uop (M) {may (uop)(n) bop (M, N) ™2 (bop)(n,ns)
L™ n+1 M= K L™ 0 N |™ K
if Lthen M else N |™&y K if Lthen M else N ||m% K
M ™ \x. M,y M,|N/z] §™ K
M N |may K
M ™ [M,] N[M;/z] §™¥ K
letz < MinN |m K
Mlfixz. M/z] §™¥ K
fixex. M ™ K

(n€eN)

INU™ [n] (neN)

Fig. 2. May Convergence

deterministic program of type P(o) is resolved to program of type o at the
time that it is passed as an argument.

Example 2.2 Recursion is only available at computation types, but given a
term T, f:0 > P(r) v M : 0 — P(7) the following acts as a fired point
(where g and z are fresh for M):

' Az.let f < fixg. [M\z.let f < ginMz]inMz:0 — P(7)

Non-determinism is often introduced via a binary operator, binary erratic
choice. It can be defined in the programming language in terms of ?N.

Example 2.3 The binary erratic choice of programs M and N of the same
computation type is defined to be (where y i3 fresh for M and N):

(M orN) € lety <N inif ythen M else N

Non-determinism is informally classified by the cardinalities of the sets of
convergent behaviours of programs that cannot diverge (see section 6 also).
For example, the binary erratic choice of deterministic terms is said to be
finitely non-deterministic, whereas 7N is said to be countably non-deterministic.
Konig’s lemma ensures that recursion does not provide a route from finite to
countable non-determinism.

Example 2.4 The program below can converge to any natural number, but
may also diverge:

I fixz. ([0] orlety < zin [plus (y,1)]) : P(nat)

It cannot be distinguished from 7N by equivalences that ignore divergent be-
haviour.




LASSEN AND PITCHER

g Mg N
uop (M) frmay bop (M, N) fimay bop (M, N) fmay
L ,ﬂ.may
if L then M else N may
M ﬂ,may may
FLthen Meme N ooy~ (L™ n+landneN)
N ﬂmay may
FLthen Mese N o~ (L™ 0)
M ™ M,[N/z] ™
Y a T S R (MY g
M N fymay M N {ymay ( 4 z Ml)
M ,ﬂ.may N[ M1 /:L'] ﬂ.may may
o= MmN~ jets e MinN e ML)
Mlfixz. M/z] 7
fixxz. M oy

Fig. 3. May Divergence

3 Similarity and Bisimilarity

Abramsky [1] develops a notion of applicative similarity for the untyped lazy
lambda-calculus, building upon earlier work of Park and Milner [16] in the
context of process calculi. The preorders and equivalences described in this
section are based upon Abramsky’s work and subsequent extensions to non-
deterministic functional languages by Howe and Ong [12,21].

There are two fundamental differences between the deterministic and non-
deterministic settings: applicative bisimilarity is not the same as mutual ap-
plicative similarity, and there are different ways of ordering non-deterministic
programs that correspond to the constructions on preorders used to charac-
terise the lower, upper, and convex powerdomains (see, e.g., [10,27]). This
leads to nine distinct variations of applicative similarity and bisimilarity for
non-deterministic programs, which collapse to just two relations on determin-
istic programs.

For the sake of brevity, “applicative” is implicit when similarity or bisimi-
larity are used in the sequel. The reader is also cautioned that terminology for
(what we call) similarity or bisimilarity differs amongst authors. We use the
following conventions: simulations and bisimulations are post-fixed points of
a function; similarity and bisimilarity are the greatest simulations and bisim-
ulations respectively; the prefix “bi” refers to a function on relations with a
symmetric image; mutual similarity is the greatest symmetric relation con-
tained in similarity.




LASSEN AND PITCHER

The variants of similarity and bisimilarity are defined in terms of two func-
tions of binary relations on programs. For a binary relation R on programs,
we define binary relations on programs: (R). g and (R)ys. The subscripts
abbreviate lower similarity and upper similarity.

Definition 3.1 Let R be a binary relation on programs. The binary relations
(R)1s and (R)yg are defined by:

(i) M, N € Ezp,, are related by (R)g if:
(a) o = unit; or
(b) c=natand I e N. M §™¥ n A N ™ n;or
(c) o=7 — mand VL € Ezp,. (M L)R (N L); or
(d) o = P(r) and YM;.M §™ [M;] = (IN1.N ™% [N1] A Mi R Ny).

(ii) M,N € Ezp, are related by (R)ys if:
(a) o = unit; or
(b) c=natand In € N. M §™ n A N §™¥ n; or
(c) o=71 = and VL € Ezp,. (M L)R (N L); or
(d) o =P(r) and =(M ™) =>
(“(N .ﬂmay) A VNlN Umay [Nl] - (3M1M Uma.y [Ml] /\MlRNl)).

The functions (-);s and (-)yg differ only in their action at computation
types. If the assumption that divergent behaviour is less than any convergent
behaviour is made explicit, then an immediate connection can be made with
one of the methods used to construct the lower and upper powerdomains
[21,23].

We are now in a position to define the nine variants of similarity and
bisimilarity. Six of the relations are defined as the greatest fixed points of
combinations of the functions defined above. However, it is easy to verify by
induction that the simple type system of the computational lambda-calculus
ensures that the greatest fixed points of the functions are also least fixed
points. The remaining relations, the mutual similarities, are the greatest sym-
metric relations contained in the three similarities.

Definition 3.2 The similarity and bisimilarity relations are defined by (where
VR.¢(R) denotes the greatest fixed point of ¢):

Sis & VR.(R)Ls
Svus = VR.(R)ys

Sos & VR(R)s N (R)ys

> p E VR.(RY1s N (RP)R

g & VR (R)ys N (RP)E

~p = VR(R)1s N (R)ys N (R N (RP)Ty

In addition, the mutual similarities ~; g, ~yg, and ~g are defined to be the
7




LASSEN AND PITCHER

greatest symmetric relations contained in Spg, Sys, and Scs respectively.
The names of the relations are summarised in the table below.

Lower | Upper | Convex
Similarity | Sis | Sus Scs
Mutual Similarity | ~;g ~us s
Bisimilarity | ~;p ~uB =cB

We refer to the tutorial papers [9,26] for the standard results concerning
similarities and bisimilarities: each similarity is a preorder; each bisimilarity
and mutual similarity is an equivalence; and the program that cannot con-
verge, 2 & fix 7. z, is a least element for each of the similarities. In addition,
it is immediate from the definitions that programs related by any of the sim-
ilarities or bisimilarities have the same type.

Although the method of definition of the similarities and bisimilarities is
convenient for the proof of compatibility in section 4, it is helpful to have the
unwound definition to mind. In the case of convex bisimilarity we have that,
if M and N are programs of the same computation type, then M ~p N if
and only if:

(1) VM,.M Umay [Ml] > (HNl.N Umay [Nl] A M1 ~cB Nl); and

(i) VN..N ™% [N] = (M. M ™ [My] A My ~cp V1); and
(iii) M <= N 7%,
Lower bisimilarity follows the same pattern as convex bisimilarity with the
exception that condition (iii) is dropped. We omit the unwinding of upper
bisimilarity, but note that it identifies programs that can diverge, and that
it does not identify a program that can diverge with one that does not. For
example, the program in example 2.4 is identified with 7N by lower similarity
and bisimilarity, but not by the upper and convex variants of similarity and
bisimilarity.

Lemmas 3.3 and 3.4 state elementary properties of, and relationships be-
tween, the different variants.

Lemma 3.3 Erratic choice is the join operation for <;g, and the meet opera-
tion for Syg at the computation types, i.e., for all programs of a computation
type L, M, N:

(i) (LorM) <N if and only if LS g N and M S N.

(ii) L <Sys(MorN) if and only if L Syg M and L Syg N.
Lemma 3.4 The following inclusions hold:

(i) Scs C SesN Susy es © s N2ys, ond ~op € = N ~yp-

(ii) ~pp C g, ~yp € ~us, ond ~cp € ~cs-

8




LASSEN AND PITCHER

\NCS /Nus
\ ! / ~ys
\—CB /

Fig. 4. Inclusions between Similarities and Bisimilarities

Example 3.5 The following ezamples demonstrate the strictness of the in-
clusions of lemma 3.4:

(i) For any program M, (Qor [[M]]) and (Qor [(Qor [M])]) are related by:

(218 N~yp), (s N=ys), and (Sps N Sus); but not by: Ses; cs, and
~cg- From this we derive:

(Qor [[M]]) ((Sts N Sus) \ Scs) (©or [(S2or [M])])
(Qor [[M]]) ((=ps N=ys) \ =cs) (Qor [(or [M])])
(Qor [[M]]) ((=ps N~yg) \ ~cs) (Qor [(Ror [M])])

(i) If M (Sps \ Sts) N, then ([M] or [N]) (=25 \ =p8) [NV |- Similarly, if
we have M (Sys \ Stk) N, then [M] (~2ys \ ~ys) ([M] or [N]). The as-
szgnment M=Q and N = [x] satisfies both of the hypotheses. Finally, if

L (Ses \S0%) M (Ses \ S¢s) N, then:
(IZ] or ([M] or [N])) (=cs \ ~cp) ([L] or [N])

A suitable assignment is: L =Q, M = (Qor [x]), and N = [«].

Figure 4 depicts the relationships between the similarities and bisimilarities
described in lemma 3.4 and example 3.5. Every edge denotes a strict inclusion.

As previously stated, the similarities and bisimilarities collapse to a sim-
ilarity preorder and a bisimilarity equivalence respectively if we remove 7N
from the programming language. It is easy to construct programs, see exam-
ple 3.6, that demonstrate that the introduction of finite non-determinism is
not conservative for any of the similarities and bisimilarities. Perhaps more
surprising is that the upper and convex variants of similarity and bisimilarity
are not conservatively extended when finite non-determinism is extended to
countable non-determinism. This is discussed in example 3.7.

Example 3.6 The following programs cannot be distinguished by application
9




LASSEN AND PITCHER

to deterministic programs:

F Az : P(nat).lety < zin [plus (y,y)] : P(nat) = P(nat)
F Az : P(nat).lety <= zinlet 2 < zin [plus (y, z)] : P(nat) — P(nat)

They can be distinguished by applying them to a non-deterministic program
such as (Oor1), in which case the second program may converge to [plus (0,1)].

Example 3.7 The following programs cannot be distinguished by application
to finitely non-deterministic programs:

F A’z. [x] : P(nat) — P(unit)
F f0: P(nat) — P(unit)
where fzy % let z < yinif (leq (z, z)) then [+] else f zy

(the definition of f is intended to be formalised as in ezample 2.2). The
programs can be distinguished by the upper and convex similarities and bisimi-
larities by applying them to TN. The first program is a strict constant function.
The second program has only one convergent behaviour, will fail to terminate
if its argument does, but, in addition, may diverge if it is possible to read an
infinite, strictly increasing sequence of numbers from its argument.

The similarity and bisimilarity relations extend in a standard way to rela-
tions on arbitrary typed terms by open extension. In general, the open exten-
sion of a relation on programs R, denoted R°, relates typed terms I' - M : o
andI'+-N:oifI'=zy:7,...,Zp : 7, and

M[Li/21]...[Ln/%a] R N[L1/21]...[Ln/%]

forall L, € Ezp,,,...,L, € Ezp,_.

4 Compatibility

In this section we sketch a proof that the open extensions of the similarities
and bisimilarities of section 3 are compatible for the programming language.
A relation R is compatible for a language if it is preserved by every constructor
0 of the language, that is, R is closed under the rule:

M,RN; ... MyRN,
0(My,..., M) R O(NVy, ..., Ny)

where the arity of 8 is n. Compatibility is of fundamental importance because
it is a prerequisite for compositional reasoning.

Howe [11] describes a method using a congruence candidate for proving
the compatibility of lower similarity. In later work, Howe [12] and Ong [21]
extend the method to convex bisimilarity and convex similarity respectively.

10




LASSEN AND PITCHER

Unfortunately, other methods (see, e.g., [1,25,5]) that have been used to prove
compatibility of similarity for deterministic programming languages do not
seem to be applicable here: there are difficulties with interpreting ?N in the
upper and convex powerdomains, and the methods based on syntactic logical
relations use syntactic continuity (see section 5) to establish the fundamental
property. Moreover, the compatibility of mutual similarity does not entail the
compatibility of bisimilarity for a non-deterministic programming language.

We now sketch Howe and Ong’s extension of Howe’s congruence candidate
method.

(1)

(i)

(ii)

(iv)

(v)

The congruence candidate R*® of a binary relation R on programs (which
will range over the variants of similarity and bisimilarity) is an inductively
defined binary relation on (potentially) open, well-typed terms. It is
the least relation closed under the following rule, where 6 ranges over
constructors of the language, including variables, and the arity of @ is n:

LiR*M, ...L,R*M, O(Mi,..., M))R°N
0(Ly,... . Ln)R°N

If R is a preorder, then the congruence candidate R° satisfies:

(a) R°CR".

(b) R*;R° C R".

(c) R* is compatible.

(d) M, R* N1 ANMyR® Ny, = M1[M2/.’II] R* Nl[Ng/.’l?]

If R is a preorder, the restriction to programs Rg of the congruence
candidate R* is a post-fixed point of (-) g or (-)yg if R is:

(a) R C (R)s =>Rj € (Ri)ws-

(b) R C (R)ys = R; € (Ri)us-

This is established by induction on the derivation of a may convergence
judgement for (a), and on a natural number that is derived from a pro-
gram that cannot diverge for (b)—although a problem is discussed below.

When R is lower, upper, or convex similarity, we deduce by co-induction
that Ry C R, and thus R®* = R°. Consequently, the open extensions of
lower, upper, and convex similarity are compatible, because the respec-
tive congruence candidates are. Compatibility of the mutual similarities
follows immediately.

The final step is to deduce that each of the bisimilarities are compatible.
If R is an equivalence, it can be shown using induction that R* C R*t°?,
where R** denotes the transitive closure of the congruence candidate of
R, which is compatible by an easy induction. Hence, R** C R*+°P, so
R** is symmetric. In addition, we can derive from (iii) that:

(a) R C (R)s = R5" C (Ro)s € (R§ s

(b) R C (R)ys => R§" C (Ro)s € (RS us:

As in (iv), co-induction can be used to show that R** coincides with R,

11




LASSEN AND PITCHER

K ™t (K € Can)
M l}must M umust N U’must
uop (M) must bop (M, N) {must
L ‘U'mUSt M ’U’muSt
if L then M else N |jmust
L ‘U(mllst N Umust
if L then M else N |Jmust
M |jmust M;[N/x] |must
M N |must
M ymst {N[My/z] §™ | M Y™ [My]}
letz <= Min N |jmust
Mfixz. M/z] st
fix x. M |Jmust

(LY™» n+1and n €N)

( L llma.y 0)

(M ™ \z. My)

?N U,must

Fig. 5. Must Convergence

when R is lower, upper, or convex bisimilarity. Therefore, the bisimilar-
ities are compatible.

It is worth noting that the method also works for recursive types and in
the absence of types, and that the use of the computational lambda-calculus
means that we do not need to use disjoint sets of call-by-name and call-by-
value variables as in [12,21].

However, we have glossed over a problem with (iii)(b). Howe and Ong
assigned natural numbers to programs that cannot diverge and that have
only finitely many convergent behaviours. For this reason, their proofs only
hold for programming languages with finite non-determinism.

The method can be extended to a language with countable non-determinism
by using induction on the derivation of a must convergence judgement. The
rules for must convergence ™"t appear in figure 5. Using induction on these
rules, the proof works smoothly for both finite and countable non-determinism.
The only problem is, how do we know that, for any program M, M (™% if
and only if M |™t? This turns out to be trivial, because the complement of
the greatest fixed point of a monotone function on a complete boolean lattice
is the least fixed point of another monotone function that can be derived from
the original function (see [2]), and the must convergence rules in figure 5 are
derived in this way from the may divergence rules in figure 3.

Theorem 4.1 The lower, upper, and convez variants of similarity, mutual
similarity, and bisimilarity are compatible.

12




LASSEN AND PITCHER

5 Convergence and Continuity

This section describes unwinding properties of recursive programs with re-
spect to may and must convergence, and examines related syntactic continuity
properties of the lower and upper similarities. The first part covers may con-
vergence and lower similarity, and the second part covers must convergence
and upper similarity. The latter includes an analysis of the heights, measured
by ordinals, of derivation trees associated to must convergence judgements.

Well-typed terms of the form fix z. M, henceforth called fixed point expres-
sions, satisfy a finite unwinding property with respect to may convergence: for
any fixed point expression fixz. M, let fix (") z. M denote the n’th unwinding,
defined inductively by: |

fix Oz. M € Q
fix ™z, M € Mlfix ™z. M/z]
Then, whenever z : P(c) - M : P(o) and z : P(o) - N : 7,

Nlfixz. M/z] {™ if and only if In < w. N[fix Mz. M/z] §™¥ (1)

where L ™ if and only if 3K.L {™» K. The proof is the same as for
deterministic languages (see, e.g., [15,26]).

A related result is a so-called syntactic continuity property of lower simi-
larity on deterministic programs: for terms N and M, as above, and L € Ezp,,

Nlfixz. M/z] Sy g L if and only if Vn < w. N[fix™z. M/z] S L (2)

See [14,26]. But syntactic continuity is not valid, in general, for non-deterministic
programs:

Example 5.1 Recall the program M © fixz. ([0] orlety < zin [plus (y,1)]),

from example 2.4. Let N % etz <N in [let y <=7N in [if leq (z, y) then z else y]].

Then, for every finite unwinding M ) of M, [M (")] 18 lower similar to N.
But [M] and N are not lower similar. (The calculations are straightforward.)

We now turn our attention to must convergence. First, consider finitely
non-deterministic programs where non-determinism only occurs in the form of
binary erratic choice. In this case, the derivation trees of the must convergence
judgements introduced in section 4 are only finitely branching. As a result,
the finite unwinding property of fixed point expressions (1) also holds with
respect to must convergence. Moreover, upper similarity satisfies the syntactic
continuity property (2) (see [15]).

In general, must convergence derivation trees of programs involving count-
able choice are countably branching. The complexity of the trees can be
measured by assigning ordinals to them in the usual way (a node is assigned
the supremum of the successors of the ordinals associated with its children,

13




LASSEN AND PITCHER

see, e.g., [20]), and this allows us to give an ordinal bound to the induction
used in the proof of theorem 4.1. The bound is simply the supremum of the
ordinals associated to the derivations of must convergence judgements. Fol-
lowing work of Apt and Plotkin [3], the bound turns out to be w{¥, the least
non-recursive ordinal. We recall the definition of recursive ordinals below, but
refer the reader to [29,20] for detailed accounts of the recursive ordinals.

Definition 5.2 An ordinal « is recursive if there exists a decidable order on
the natural numbers that is order-isomorphic to a.

We first demonstrate that for each recursive ordinal o there is a program
that cannot diverge, and that has a must convergence derivation tree with
height at least . Since « is a recursive ordinal, and it can be verified that
every partial recursive function can be defined in the programming language,
there is a program M, : nat — nat — P(nat) that does not diverge on any
input, and the relation that it represents is order-isomorphic to a. Now we
also need to construct a program slow that accepts as arguments a program
representing an order on natural numbers, and a natural number. It then
“counts down” from the given number until it reaches a minimal element, at
which point it converges to [x]. The type of the program is:

I slow : (nat — nat — P(nat)) — nat — P(unit)

It is intended that the numeric argument, say n, is the code, with respect to
the coding used by M,, of an ordinal 8 < ¢, and that the height of the deriva-
tion tree of (slow M, n) ™= is at least 3. Intuitively, the must convergence
derivation tree for this program should contain as sub-trees the derivation
trees for (slow M,m) (™ where m codes an ordinal strictly less than S.
The expressive power of ?N can be used to do this: by choosing any natural
number we are choosing the code of any ordinal strictly less than o. The
decidability of the order on codes of ordinals strictly less than o allows us
to then discard codes of ordinals that are greater than or equal to 8. The
following definition accomplishes this:

slow fz & lety <N inletz < fyzinif zthen (slow f y) else [x]

Then, for each recursive ordinal « represented by My, we can define a program
with a must convergence derivation tree of height a:

let z <?N inslow M, z (3)

In the other direction we have to show that the ordinal height of a must
convergence derivation tree is always recursive. Suppose that M is a program
that must converge, and that has a derivation tree with height . The ordinals
strictly less than o are represented by paths in the tree that start at the root
of the tree, i.e., at M, together with annotations for the may convergence

14




LASSEN AND PITCHER

side-conditions. With the side conditions given, it is decidable whether an
arbitrary path is a valid path from M by checking each component of the
path against the rule schema of figure 5. With a suitable encoding of paths
in the tree as sequences of natural numbers, the derivation tree of M Jjmust
is a recursive tree, and then the Kleene-Brouwer order on paths of the tree
is both decidable and order-isomorphic to an ordinal greater than or equal
to a. We refer the reader to [20] for the definition of recursive trees and the
Kleene-Brouwer order.

In general, fixed point expressions in countably non-deterministic programs
do not satisfy a finite unwinding property with respect to must convergence,
because of the possibly transfinite heights of derivation trees; and the syntac-
tic continuity property of upper similarity is invalid. For instance, if a > w,
the program (3) is a counterexample to both the finite unwinding and syntac-
tic continuity properties. It is, however, possible to formulate an unwinding
property for must convergence that holds for countable non-determinism by
progressing to transfinite unwindings:

Nlfixz. M/z] ™ if and only if 3o < wT¥. Nlfix @z, M/z] §™* (4)

In order to make sense of this assertion, we need to define the transfinite un-
windings and their must convergence behaviour. We extend the syntax with
new terms fix Mz. M, for all recursive limit ordinals A, with the same typing
rule as for ordinary fixed point expressions. Arbitrary recursive unwindings
fix @z. M, for o < wCK, are defined if we let fix ©z. M %f (). as above, and,

inductively, fix @Dz, M % M[fix @ z. M/z], for all & < wC¥. Next, the defi-
nition of must convergence has to be extended to the new terms. Intuitively,
we want the following rule which expresses that the must convergence at re-
cursive limit ordinals is the best of all the must convergence behaviours at
smaller ordinals:

fix (). M | must

C
Fx Mg, 3 |7 (@ < X < wbK)

But, since the definition of must convergence in figure 5 depends on may
convergence, it would be necessary to extend the may convergence relation on
terms of computation type to the new terms as well, and it it is not clear how
to do this. We get around this obstacle by giving a self-contained definition of
must convergence at computation types without reference to may convergence.
This can be achieved by means of either a “structurally inductive” definition
of the must convergence predicate, M ™', in the style of Pitts [24] or an
inductively defined must convergence relation, M ™ [, between terms M
and sets of canonical terms . We sketch the second solution here. If M is
a term in the original language, the meaning of M ™" I/ is that M must
converge and that U is the set of canonical terms that M may converge to.

15




LASSEN AND PITCHER

For example,
K ™t {K} (K € Can) ?N ymust {[n] |n € N}
A rule for let can be given without reference to may convergence:

My™st Yy {N[M;/x] §™ Vg | [Mi] € U}
letz < Min N == ) Vs | [Mi] € U}

The remaining rules are straightforward and make no reference to may con-
vergence at computation types. The must convergence relation is extended
to the new terms for transfinite unwindings of fixed point expressions by the
rule:

fix (Mg, M must i
fix Mg, M |must 1f

(@ < X < wPK)

The analysis of the definition of the must convergence predicate in figure 5
shows that the closure ordinal of the rules for the must convergence relation
is also w{X. The must convergence predicate, M ™, is obtained from the

must convergence relation as M ||™ust Yy M Jmust 24, This concludes the
definition of the must convergence behaviour of the transfinite unwindings of
fixed point expressions. The proof of (4) is by induction on the derivation of
the must convergence judgment.

The definition of the upper similarity from section 3 can be extended to
programs with occurrences of transfinite unwindings of fixed point expressions,
by extending (R)yg to relate programs M, N € Ezp, at computation types
o =P(7) if

VUM ™Y = (FV.N ™ VAVN, € VAM; e U.M; R M)

The extension of upper similarity is obtained as the greatest fixed point of
the extended definition of the function (-)yg. It is compatible with respect
to the extended language. The compatibility proof for upper similarity from
section 4 carries over if the induction is now conducted on the derivation of
M umust u

We ask two questions about the extension of upper similarity to the ex-
tended language. First, is it a conservative extension, i.e., does it include the
upper similarity relation defined in section 3 for the original language? Second,
does it enjoy a transfinite syntactic continuity property? If both are answered
affirmatively, we get a useful induction principle for reasoning about fixed
point expressions with respect to upper similarity in the original language.
The two questions are left as open problems.

16




LASSEN AND PITCHER

6 Beyond Countable Choice

We have described two forms of non-determinism: the construct that we have
taken as primitive ?N, and binary erratic choice. In this section, we outline
two other possibilities that have been proposed in the literature.

The first is based on the observation that binary erratic choice has precisely
the same expressiveness as a new choice construct ? {0, 1} that may converge to
either [0] or [1], but cannot diverge. It is natural to ask whether other forms of
non-determinism can be obtained in a similar way, e.g., if X is a non-empty set
of natural numbers, then what is the expressiveness of a choice construct ?.X
that may converge to [n], for any n € X, but cannot diverge? It turns out that
choice constructs for countably infinite sets of natural numbers are not always
equally expressive, because Apt and Plotkin [3] show that exactly the choice
constructs for non-empty, recursively enumerable sets of natural numbers can
be defined from ?N. This suggests that classifying non-deterministic programs
by the cardinality of their convergent behaviour is misleading.

However, classification is not the only issue affected by the result of Apt
and Plotkin. In the light of example 3.7, it is of interest to know whether
the presence of additional forms of non-determinism further alters the upper
and convex variants of similarity and bisimilarity. If this is the case, then a
denotational model of non-determinism that can interpret sets of natural num-
bers that are not recursively enumerable will discriminate more than mutual
similarity (or bisimilarity) for a programming language with only ?N.

In order to study these problems, the programming language given here
can be extended with additional choice constructs of the form described above.
The proofs of compatibility sketched in section 4 readily extend to more gen-
eral forms of “erratic” non-determinism [23]. Roscoe [30] studies similar non-
deterministic choice constructs in an extension of CSP.

McCarthy’s ambiguous choice operator exhibits a very different form of
non-determinism. The ambiguous choice of two programs has a natural, fair
(also known as dove-tailing) implementation: run both programs in parallel,
and return the value of the first to converge. The ambiguous choice of two
programs can converge to any value that the programs can converge to, but
only diverges when both programs can diverge.

Moran [18] studies a functional programming language extended with am-
biguous choice and proves that lower similarity is compatible for the language.
An example is given there that shows that convex similarity cannot be com-
patible in the presence of ambiguous choice. Similar examples can be used to
show that upper similarity and bisimilarity also fail to be compatible. How-
ever, the compatibility of convex bisimilarity in the presence of ambiguous
choice is an open problem. The method described in section 4 is not immedi-
ately applicable because it would imply the compatibility of convex similarity.

17




LASSEN AND PITCHER

7 Conclusion

We have defined a simply-typed functional programming language with an
operator that can converge to any natural number, and have introduced nine
compatible relations on programs. The relations are lower, upper, and con-
vex variants of applicative similarity and bisimilarity. Although some of the
relations have been studied individually in the literature, we have emphasised
that they can be constructed using only two functions, and that this affords a
natural structure to the proofs of compatibility. In addition, we have mapped
the inclusions between the relations, and have given characteristic examples
of the differences between them.

Although the programming language is based on the computational lambda-
calculus and non-determinism is restricted to computation types, the examples
can be modified for programming languages with non-determinism at function
or product types (with the assumption that convergence is observable at those
types). We also note that the mechanism for creating and composing com-
putations in the computational lambda-calculus provides an alternative, with
the same expressive power, to using both call-by-name and call-by-value ab-
stractions to control the resolution of non-determinism.

A different, interesting example demonstrates that the upper and convex
variants of similarity and bisimilarity are sensitive to whether finite or count-
able non-determinism is present in the programming language, i.e., countable
non-determinism can be used to distinguish programs of function type that
cannot be distinguished by finitely non-deterministic programs.

Previous proofs of compatibility have been restricted to languages with
finite non-determinism. We have extended them to a programming language
with countable non-determinism by using a relationship between least and
greatest fixed points in complete boolean lattices to transform a co-inductively
defined may divergence predicate into an inductively defined must convergence
predicate. The supremum of the ordinal heights of the must convergence
derivation trees is the least non-recursive ordinal w{X.

In this paper we have concentrated on operational models based on co-
inductively defined similarity and bisimilarity relations. It may be argued
that the resulting models are finer-grained than is warranted by reasonable
notions of observation. An alternative is to operate with Morris-style contex-
tual approximation preorders and equivalence relations which are naturally
defined on the basis of the may and must convergence predicates [13,15]. The
compatibility of the similarity and bisimilarity relations considered here im-
plies that they are all contained in corresponding contextual relations. The
inclusions are strict, for different reasons [15]. For instance, the failure of
syntactic continuity in example 5.1 distinguishes lower similarity from may
contextual approximation which does satisfy the syntactic continuity prop-
erty (2) for arbitrary non-deterministic programs. Lower and upper similarity
are used as auxiliary relations in [13] to reason about contextual equivalences

18




LASSEN AND PITCHER

for the operationally-defined specification language of action semantics, action
notation, which features countable non-determinism.

Acknowledgement

We would like to thank Ralph Loader, Peter Mosses, Luke Ong, Stan Wainer,
and especially Andrew Moran for helpful conversations.

References

[1] S. Abramsky. The lazy lambda calculus. In D. A. Turner, editor, Research
Topics in Functional Programming, The UT Year of Programming Series, pages
65-117. Addison-Wesley, 1990.

[2] P. Aczel. An introduction to inductive definitions. In J. Barwise, editor,
Handbook of Mathematical Logic, number 90 in Studies in Logic. North-Holland
Publishing Company, 1977.

[3] K. R. Apt and G. D. Plotkin. Countable nondeterminism and random
assignment. Journal of the ACM, 33(4):724-767, October 1986.

[4] R. J. Bird and O. de Moor. The Algebra of Programming. Prentice Hall, 1997.

[5] L. Birkedal and R. Harper. Operational interpretations of recursive types in an
operational setting (summary). In M. Abadi and T. Ito, editors, Symposium
on Theoretical Aspects of Computer Science, Sendai, Japan, volume 1281 of
Lecture Notes in Computer Science. Springer-Verlag, 1997.

[6] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract
interpretations. In Conference Record of the 19th ACM Symposium on
Principles of Programming Languages, pages 83-94, 1992.

[7] A. D. Gordon. Functional Programming and Input/Output. Distinguished
Dissertations in Computer Science. Cambridge University Press, 1994.

[8] A. D. Gordon. Bisimilarity as a theory of functional programming. BRICS
Notes Series NS-95-3, Department of Computer Science, University of Aarhus,
1995.

[9] A. D. Gordon. A tutorial on co-induction and functional programming.
In Proceedings of the 199/ Glasgow Workshop on Functional Programming,
Workshops in Computing, 1995.

[10)C. A. Gunter.  Semantics of Programming Languages: Structures and
Techniques. Foundations of Computing. MIT Press, 1992.

[11] D. J. Howe. Equality in lazy computation systems. In Proceedings, 4th Annual
Symposium on Logic in Computer Science, pages 198-203. Computer Society
Press, Washington, 1989.

19




LASSEN AND PITCHER

[12] D. J. Howe. Proving congruence of bisimulation in functional programming
languages. Information and Computation, 124(2):103-112, 1996.

[13] S. B. Lassen. Action semantics reasoning about functional programs. Math.
Struct. in Comp. Science, pages 557-589, 1997.

[14] S. B. Lassen. Relational reasoning about contexts. In A. D. Gordon and A. M.
Pitts, editors, Higher Order Operational Techniques in Semantics, Publications
of the Newton Institute, pages 91-135. Cambridge University Press, 1998.

[15] S. B. Lassen. Relational Reasoning about Functions and Nondeterminism. PhD
thesis, Department of Computer Science, University of Aarhus, February 1998.
URL http://www.cl.cam.ac.uk/users/sbl121/docs/phd.html.

[16] R. Milner. Communication and Concurrency. International Series in Computer
Science. Prentice-Hall, New York, 1989.

[I17]E. Moggi. Notions of computations and monads.  Information and
Computation, 93(1):55-92, 1991.

[18] A. Moran. Natural semantics for non-determinism. Licentiate thesis, Chalmers
University of Technology and University of Géteborg, May 1994.

[19] P. D. Mosses. Action Semantics. Number 26 in Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1992.

[20] P. Odifreddi. Classical Recursion Theory, volume 125 of Studies in Logic.
Elsevier Science Publishers B.V., 1989.

[21] C.-H. L. Ong. Concurrent lambda calculus, and a general pre-congruence
theorem for applicative bisimulation. Preliminary version, August 1992.

[22] C.-H. L. Ong. Non-determinism in a functional setting. In Proceedings, 8th
Annual Symposium on Logic in Computer Science, pages 275-286. Computer
Society Press, Washington, 1993.

[23] C. S. Pitcher. Functional Programming and Erratic Non-Determinism. PhD
thesis, Oxford University Computing Laboratory. In preparation (expected
September 1998).

[24] A. M. Pitts. Parametric polymorphism and operational equivalence.
Preliminary version. In this volume.

[25] A. M. Pitts. A note on logical relations between semantics and syntax. Logic
Journal of the Interest Group in Pure and Applied Logics, 5(4):589-601, July
1997.

[26] A. M. Pitts. Operationally-based theories of program equivalence. In P. Dybjer
and A. M. Pitts, editors, Semantics and Logics of Computation. Cambridge
University Press, 1997. Lectures given at the CLICS-II Summer School on
Semantics and Logics of Computation, Isaac Newton Institute for Mathematical
Sciences, Cambridge, UK, September 1995.

20




LASSEN AND PITCHER

[27] G. D. Plotkin. Domains. URL http://hypatia.dcs.qmw.ac.uk/sites/
other/domain.notes.other/, 1983.

[28] S. Prasad, A. Giacalone, and P. Mishra. Operational and algebraic semantics
for Facile: A symmetric integration of concurrent and functional programming.
In M. S. Paterson, editor, Automata, Languages and Programming, volume 443
of Lecture Notes in Computer Science, pages 765-780. Springer-Verlag, 1990.

[29] H. Rogers, Jr. Theory of Recursive Functions and Effective Computability.
McGraw-Hill Series in Higher Mathematics. McGraw-Hill, 1967.

[30] A. W. Roscoe. Two papers on CSP. Technical Report PRG-67, Programming
Resarch Group, Oxford University Computing Laboratory, July 1988. (An
alternative order for the failures model & Unbounded nondeterminism in CSP).

21




Electronic Notes in Theoretical Computer Science 10 (1998)
URL: http://www.elsevier.nl/locate/entcs/volumel0.html 26 pages

Parametric Polymorphism
and Operational Equivalence

(Preliminary Version)

Andrew M. Pitts !

Cambridge University Computer Laboratory
Pembroke Street, Cambridge CB2 3QG, UK

Abstract

Studies of the mathematical properties of impredicatively polymorphic types have
for the most part focused on the polymorphic lambda calculus of Girard-Reynolds,
which is a calculus of fotal polymorphic functions. This paper considers polymor-
phic types from a functional programming perspective, where the partialness arising
from the presence of fixpoint recursion complicates the nature of potentially infinite
(‘lazy’) datatypes. An operationally-based approach to Reynolds’ notion of rela-
tional parametricity is developed for an extension of Plotkin’s PCF with V-types
and lazy lists. The resulting logical relation is shown to be a useful tool for proving
properties of polymorphic types up to a notion of operational equivalence based on
Morris-style contextual equivalence.

1 Introduction

‘It turns out that virtually any basic type of interest can be encoded within Fp
[polymorphic lambda calculus]. Similarly, product types, sum types, ezistential
types, and some recursive types, can be encoded within Fy: polymorphism has an
amazing expressive power.’

Cardelli [6, page 2225]

It is a widely held view—typified by the above quotation—that the poly-
morphic lambda calculus (PLC) of Girard and Reynolds [10,32] plays a foun-
dational role for the statics (type systems) of functional programming lan-
guages analogous to the one played by the untyped lambda calculus for the
dynamics of such languages. The technical justification for this view rests on
the encoding of a wide class of datatype constructions as PLC types: see for

1 This research was funded by grant number GR/L38356 from the UK EPSRC.
(©1998 Published by Elsevier Science B. V.




PrrTs

example [5,34] and [11, Chapter 11]. However, these results cannot just be ap-
plied ‘off the shelf’ to deduce properties of functional programming languages
equipped with polymorphic types. This is because PLC is a theory of total
polymorphic functions—a consequence of the fact that G-reduction of typeable
PLC terms is strongly normalising [10]. On the other hand, functional pro-
gramming languages typically feature various mechanisms for making general
forms of recursive definitions, both at the level of expressions and at the level
of types. The first kind of definition of course entails the presence of ‘partial’
expressions, i.e. ones whose evaluation does not terminate. And then the sec-
ond kind of definition may throw up types whose values involve partiality in
complicated ways, through the use of non-strict constructors. Can such ‘lazy’
datatypes be encoded with combinations of function- and V-types? \

A specific example may help to bring this question into sharper focus. Con-
sider the type num list of lazy lists of numbers in a non-strict functional pro-
gramming language, such as Haskell (www.haskell.org/report/). The canon-
ical forms of this type are the nil-list, nil, and cons-expressions, H:T, where
the head H (of type num) and the tail T (of type num list again) are not
necessarily in canonical form (and therefore their evaluation may not termi-
nate). Thus expressions of this type can represent finite lists (such as 0:nil),
properly infinite lists (such as £ = 0:£), or ‘partial’ lists (such as 0:Q2, where
Q is a divergent expression of type num list). Suppose now that the language
is augmented with V-types. (We consider why one might want to do so in a
moment.) In PLC, the type

L(7) o Va(a— (T2 a—a) > a) (onotfreein 7)

encodes finite 7-lists—in the sense that the closed B-normal forms of L(7) are
in bijection with finite lists of closed §-normal forms of type 7. But what is
the situation in the functional programming language? Can uses of the lazy
list type num list always be replaced by the polymorphic type L(num)? More
precisely, are num list and L(num) ‘operationally isomorphic’, in the sense
that there are functions in the language from num list to L(num) and back
again which are mutually inverse up to some reasonable notion of operational
equivalence of expressions? Or is num list operationally isomorphic to some
some other pure polymorphic type, or to no such type?

The reader will not find the answer to such questions in the literature, as
far as I know. Partly this is because it is hard to construct denotational mod-
els of both impredicative polymorphism and fixpoint recursion. Such models
do exist (see [7,8] for one style of model and [2] for another), but there is not
much in the way of useful analysis of the properties of polymorphic types in
them. On the other hand for pure PLC, Reynolds’ notion of relational para-
metricity [33,20] turns out to provide a very powerful tool for such an analysis.
There are models of PLC supporting a relationally parametric structure [3],
and in such models polymorphic encodings of datatype constructions have
strong properties, indeed have category-theoretic universal properties charac-

2




PrrTs

terising the constructions uniquely up to isomorphism [16,17,1,30]. Can one
extend this relational approach to encompass fixpoint recursion? Unpublished
work of Plotkin [29] indicates that one can. Here we show that a relatively
simple, syntactic approach is possible.

Should one care? Well, for one thing the results presented here provide
a basis for obtaining some ‘free theorems’ [35] up to operational equivalence
(and modulo some restrictions to do with strictness) in languages like ML and
Haskell that combine higher order functions, fixpoint recursion and predicative
polymorphism. However, the power of the relational approach really shows
when considering fully impredicative V-types. Since the type reconstruction
problem is undecidable in this case [36] and explicit labelling with type infor-
mation is considered cumbersome, most higher order typed languages meant
for human programmers eschew fully impredicative polymorphism. However,
it seems that impredicative polymorphism may be a useful feature of explicitly
typed intermediate languages in compilers [14,23]. And undoubtedly there is
foundational interest in knowing, in the presence of fixpoint recursion, to what
extent various kinds of type can be reduced to pure polymorphic types.

As Wadler [35, Sec. 7] and Plotkin [29] point out, extending relational
parametricity to cope with fixpoint recursion seems to necessitate working
not with arbitrary relations, but with ones that are at least admissible in the
domain-theoretic sense, i.e. that are bottom-relating and closed under taking
limits of chains of related approximations. However, in this paper a rela-
tional framework for polymorphism and fixpoint recursion is developed which
is based upon operational rather than denotational semantics. This allows
one to avoid some of the complexities of the domain-theoretic approach. In
particular, it turns out that questions of admissibility of relations only have
to be treated implicitly, via an operationally-defined closure operator. This is
perhaps the main technical contribution of the paper. As a result one obtains
a straightforward and apparently quite powerful method for proving proper-
ties of Morris-style contextual equivalence of expressions and types involving
impredicative polymorphism and fixpoint recursion; and one which is based
only upon the syntax and operational semantics of the language. (See [25,26]
for previous results of this kind.)

The plan of the paper is as follows. In the next section we introduce
PCF™, an extension of PCF [28] with lazy lists and V-types which will serve
as the vehicle for examining the issues raised above. In Sec. 3 we define a
notion of observational congruence for PCF* expressions: it is equivalent to
a Morris-style contextual equivalence based upon observing convergence of
evaluation in all contexts of list-type (but not of function- or V-type). Sec. 4
presents our syntactic version of relational parametricity. An action of the
PCF types on binary relations between PCF T expressions (of the same closed
type) is defined. This gives rise to a certain binary logical relation which is
shown to characterise PCF* observational congruence (Theorem 4.15). Sec. §
shows how the logical relation can be used to prove basic properties of PCF*

3




PiTTS

observational congruence (such as various extensionality properties) and to
prove observational isomorphisms between types. We show, for example, that
in PCF™ it is indeed the case that o list is observationally isomorphic to the
pure polymorphic type Vo' (&' = (a— &’ — ') = o). Finally, Sec. 6 considers
some directions in which the results presented here might usefully be extended.

2 Combining PCF and Impredicative Polymorphism

We will make use of a small programming language, PCF™, which is a relative
of that veteran of studies in programming languages, PCF [28]. Recall that
PCF is a simply typed, call-by-name lambda calculus equipped with fixpoint
recursion and some basic operations on ground types of natural numbers and
booleans. To this we add V-types from the Girard-Reynolds polymorphic
lambda calculus and a type constructor for lists. For reasons of parsimony we
do without the ground types of natural numbers and booleans, because the
role they play in the theory can be taken by the list types. So the PCF* types
are given by

Ti=« type variable
| Tlist list type
| 7— 7 function type
| Ya(r) V-type

and the PCF* terms are given by

M: =z variable
nil, empty list
M: M non-empty list

case Mofnil= M |z :: 2= M case expression

|

|

|

| Az:7(M) function abstraction
| MM function application
| Aa(M) type generalisation

| M7t type specialisation

| fix(M) fixpoint recursion.

Here o and z range over disjoint countably infinite sets TyVar and Var of
type variables and variables, respectively. The constructions

Va(-) caseMofnil=M |z:2'=(-) Az:7(-) Aa(-)

are binders and we will identify types and terms up to renaming of bound
variables and bound type variables. We write ftv(e) for the finite set of free

4




PITTS

TFH:7r T'HT:7lst
FH:T:7list

Lz:trzx:7 '+ nil; : 7list

TFL:nlist TFMy:mo LDoh:m,t:nlistkMy:m
I'kcaseLofnil=> M, |hut=>Me 1

Fz:nkFM:7 IT'HFF:mm—=m TFHA:71
FTFXz:n(M):m =7 T'FFA:m
o, 'FM:7 I'G:Va(n) TFF:7—o7T

FFAa(M):Va(r) TFGmr:m[rfa)] TFHAx(F):7

Fig. 1. PCF™ type assignment relation

type variables of an expression e (be it a type or a term) and fv(M) for the
finite set of free variables of a term M. A type 7 is closed if ftv(r) = 0;
whereas a term M is closed if fu(M) = (, whether or not it also has free type
variables. The result of substituting a type 7 for all free occurrences of a type
variable o in e (a type or a term) will be denoted e[7/c]. Similarly, M[M'/z]
denotes the result of substituting a term M’ for all free occurrences of the
variable z in M.

We are only interested in terms that can be assigned types. We use a
typing judgement of the form I' - M : 7 where

* the typing environment T is a pair A, A with A a finite subset of TyVar and
A a function defined on a finite subset dom(A) of Var and mapping each
z € dom(A) to a type with free type variables in A;

» M is a term with ftu(M) C A and fu(M) C dom(A);
e 7 is a type with ftv(r) C A.

Then the PCF™ type assignment relation consists of all such judgements in-
ductively defined by the axioms and rules in Fig. 1—all of which are quite
standard. In the figure, the notation I', z : 7 indicates the typing environment
obtained from the typing environment I' = A, A by properly extending the
function A by mapping z ¢ dom(A) to 7. Similarly, o, I' is the typing en-
vironment obtained by properly extending A with an a ¢ A. Note that the
explicit type information included in the syntax of terms means that, given I'
and M, there is at most one 7 for which I' = M : 7 holds.

We write Typ for the set of closed PCF™ types. Given 7 € Typ, we write
Term(7) for the set of PCF* terms M for which @ - M : 7 is derivable from
the axioms and rules in Fig. 1.

We give the operational semantics of PCF* in terms of an inductively
defined relation of evaluation. It takes the form M |} C, where M and C are
closed terms of the same closed type (i.e. M,C € Term(r) for some 7 € Typ)

5




PrrTs

C | C (C canonical)

Linil, M} C LI H:=T M[H/hT/t]}C
(case Lofnil=>M; | h:t= M) 4 C (case Lofnil= M; |h:t=>M) | C

Fiyrz:7(M) M[A/z]4C GIAa(M) Mr/a]yC  Ffix(F)§C
FAlC Gt{yC fix(F) § C

Fig. 2. PCF™ evaluation relation

and where C is in canonical form:
Cu=nil, | M:M|Az:7(M)|Aa(M).

The evaluation relation is inductively defined by the axiom and rules in Fig. 2.
Note that function application is given a call-by-name semantics and that the
evaluation rule for type specialisations, G T, is dictated by our choice of canon-
ical form at V-types—we choose not to evaluate ‘under the A’. Evaluation is
deterministic: given M, there is at most one C for which M | C holds; and
of course the rule for fix entails that there may be no such C.

3 Observational Congruence

Recall that two terms of a programming language are regarded as contertually
equivalent if they are interchangeable in any program without affecting the
observable behaviour of the program upon execution. Of course, to make this
a precise notion one has to choose what constitutes an executable program and
what behaviour should be observable. For PCF, Plotkin [28] chooses ‘program’
to mean ‘closed term of ground type’ and the observable behaviour of such a
program to be the constant (integer or boolean) to which it evaluates, if any.
Since we have replaced ground types with list types, here we take a program
to be a closed term of list type and we observe whether or not it evaluates to
nil.

Thus given ' - My : 7 and T - M, : 7 in PCF™*, we can say that the
terms M; and M, are contextually equivalent, and write I' = My =cx My : 7,
if for any context M[—] for which M[M;], M[M,] € Term(7' list) for some
7' € Typ, it is the case that

M[Ml] Y nily & M[MQ] | nil.
As usual, a contert M[—] means a PCF™* term with a subterm replaced by
the placeholder ‘—’; and then M[M’] indicates the term that results from
replacing the placeholder with the term M’. This is a textual substitution
which may well involve capture of free variables in M’ by binders in M[—].

So, unlike terms, contexts are not identified up to renaming of bound variables.
Although this might seem like a minor syntactic matter, it is an indication

6




PIirTs

PFHEH :7 THFTET :Tlist
CHH:=T)E (H =T :7list

Tx:thz€x:7 I'F nil, € nil, : 7 list

THFLEL :mlist TFMEM]:m Toh:m,t:mlistk- My E M)
Tt (case Lofnil=> M; | h::t=>M>) £ (case L' of nil = M| | h::t= M) : 72

Do FMEM 1 THFFEF :m—>m THAEA N
TFXz:nn(M)EAz:nn (M) i1 o m PH(FA)E(F'A):m
o TFMEM : 1 TFGEG :Va(n)

TFAa(M)EAa(M'):Va(r) TH(Gn)E(G'n):mlr/a]

THFFEF 7T
'+ fix(F) € fix(M') :

Fig. 3. Compatibility properties

alFMEM :n
[[re/a] - M[r2/a) € M'[r2/a] : 11|12 /0]

Fz:nkFMEM :n
'+ M[N/z] € M'[N/z] : 1

fTFN:7

Fig. 4. Substitutivity properties

that the notion of ‘context’ occurring in the above definition of contextual
equivalence is rather too concrete. Perhaps a better indication is the fact that
the substitutivity property of PCF* contextual equivalence

Lz:nt-M=uM:mn &THFN:1, =
' M[N/z] =ux M'[N/z] : 75

is by no means an immediate consequence of the above definition of =¢. This
is because M[N/z] is not of the form M y[M] for some context My[—] (uni-
formly in M). Nevertheless, we can regard M[N/z] as a use of M ‘in context’,
or in other words, it is reasonable to demand that the above substitutivity
property holds of a notion of PCF* contextual equivalence by definition.

For these reasons, in the rest of this section we develop a slightly more
abstract treatment of PCF™ contextual equivalence that avoids explicit use of
contexts (following [12,18]). In fact, this approach also makes it easier to state
and prove the fundamental properties of the logical relation to be defined in
the next section.




PiTTS

Definition 3.1 Suppose £ is a set of 4-tuples (T, M, M’, 7) satisfying
(1) TFMEM :7 = TFM:7 & THM :7)
where we write ' - M £ M’ : 1 instead of ([', M, M',7) € €.

(i) £ is compatible if it is closed under the axioms and rules in Fig. 3. It is
substitutive if it is closed under the rules in Fig. 4. (All these axioms and
rules are intended to apply only to 4-tuples satisfying the well-formedness
condition (1)).

(i) Note that compatible relations are automatically reflexive. A PCF* pre-
congruence is a compatible, substitutive relation which is also transitive. A
PCF™* congruence is a precongruence which is also symmetric.

(iii) £ is adeguate if for all closed types 7 € Typ and closed terms M, M’ €
Term(t list)

OF MEM :7list = (M §nil, & M {nil,).

Theorem 3.2 (PCF* observational congruence) There is a largest ade-
quate PCF™ congruence relation. We call it PCF* observational congruence
and write it as =qps-

Proof. Obviously the intersection of any collection of PCF™ congruence re-
lations is another such. So the PCF™ congruence relations form a complete
lattice when ordered by subset inclusion. Slightly less obviously, but for quite
general reasons, the join in this complete lattice of some congruences &; is
given by (U; &)*, the reflexive-transitive closure of the set-theoretic union of
the relations.? In particular, the join of all the adequate congruences is given
by the reflexive-transitive closure of their union. But this is again adequate,
because adequate relations clearly are closed under the operations of union
and reflexive-transitive closure. 0O

PCF™ observational congruence, =qs, is indeed equivalent to the con-
textual equivalence =, which we mentioned at the start of this section. 3
However, this ‘context free’ version is technically more convenient when it
comes to relating contextual equivalence to the logical relation introduced in
the next section. For more results about ‘context free’ characterisations of
contextual equivalence, see [19, Section 3.7].

We conclude this section with some examples of properties of PCF* types
up to observational congruence. It does not seem easy to prove such properties
directly from the definition of observational congruence (or using the more

2 To see this, note that in the presence of reflexivity and transitivity, the compatibility
conditions in Fig. 3 involving two hypotheses can each be replaced by two rules involving
only single hypotheses: and of course the union of some relations closed under single-
hypothesis rules (and the reflexive-transitive closure of such a relation) is another such.

3 The only difficult part of the proof of coincidence of =¢ix and =,ps is the fact that =cix
is closed under the rules in Fig. 4, the substitutivity properties. This can be proved as a
corollary of the properties of the logical relation of Sec. 4, but we do not do so here.

8




PITTS

concrete notion of contextual equivalence). The logical relation of the next
section will provide the means to prove such properties.

In the case of closed terms of closed type, we just write My =qps M2 : 7T
for @ F M1 =obs M2 T

Example 3.3 (Polymorphic null type) Consider the type
null & Vo (a).

In PCF* there is a closed term of this type, namely o Aa(fix(Az :
a(z))). This is a ‘polymorphic bottom’ since for each 7 € Typ it is not hard
to see that Q7 diverges, i.e. that there is no C for which Q7 | C holds. In
fact, up to observational congruence, € is the only closed term of type null.
In other words, we claim that for all G € Term(null), one has G =g {2 : null.

Example 3.4 (Polymorphic unit type) Consider the type

unit € Va(a— a).

As well as the ‘bottom’ term Q unit, this type contains the polymorphic
identity function Aa(Az : a(z)). But that is all: we claim that if G €
Term(unit), then either G =qbs (Q unit) : unit or G =cps Ao (Az : a(2)) :
unit.

Example 3.5 (Polymorphic lists) Consider the polymorphic list type
L(a )def‘v’a (@ = (a—d —d)—=d).
Define terms I and J as follows:
IT¥ Ao (ix (i : alist — L(a) (AL : alist (
Ad (A’ :d/(Af:a—d —d(
casefofnil= ' | h::t= fh(itd 2’ f))))))))
JE AaQp: La) (p(alist) (Ve) ()

where N % Aa(nil,) and C & Aa(Ah : a(At : alist(h::t))). Then I
and J are closed terms of types Vo (alist & L(a)) and Vo (L(a) — alist)
respectively. We claim that these terms constitute an isomorphism between
a list and L(c) up to observational congruence, polymorphically in .. In other
words, the following observational congruences hold:

a,f:alisttEJa(lal)=sl: alist
a,g:Ll@FIa(Jag) =ws g: L(a).

4 Syntactical Relational Parametricity

We aim to characterise PCF* observational congruence (defined in Theo-
rem 3.2) in terms of a binary ‘logical relation’ incorporating a notion of re-
lational parametricity analogous to that introduced by Reynolds [33] for the

9




PiTTs

(3) Ay (7) « T3

(4)  Aris(r) or A+ AP x7)"T)
G) Arsn(®) € AR = A ()

(6) Avam)(7r) & Vr (AT, 7))

Note

(4) uses Definitions 4.9 and 4.7; (5) uses Definition 4.2; (6) uses Definitions 4.3 and 4.7.

Fig. 5. Definition of the logical relation A

pure polymorphic lambda calculus. The logical relation is parameterised by
term-relations.

Definition 4.1 (Term-relations) Given closed PCF™" types 7,7' € Typ,
we write Rel(r,7') for the set of subsets of Term(7) x Term(r').

Each open type 7(c,...,a,) gives rise to a function mapping tuples of
term-relations to term-relations:
(2) r1 € Rel(my,7l),...,Tn € Rel(Tn, 7)) — AL (F) € Rel(r(7), 7(7")).
This ‘action’ of PCF™ types on term-relations is defined by induction on the
structure of the type 7, as in Fig. 5. The definition makes use of various
operations on term-relations, associated with the PCF* type constructors,
which will be explained below. When 7 is a closed type, (2) amounts to
specifying a certain term-relation A, € Rel(r,7) and this will turn out to
coincide with observational congruence:

M =cix My:7 & (Ml, M2) € AT (Ml, M2 € TC’I"m(T)).

This, together with the definition of A at V-types is what permits us to deduce
results like those in Examples 3.3-3.5 (see Secs 5.2-5.5).

The definition of A, _,, in terms of A, and A, in Fig. 5 uses the following

operation on term-relations, characteristic of the notion of ‘logical relation’
(cf. [27]).

Definition 4.2 (Action of — on term-relations) Given r; € Rel(r,77)
and 7, € Rel(my,75), we define r; — 12 € Rel(my — 12, 7] = 73) by:
(FF)Yern—=rm Zv@4,A) ern (FAF A)ery).
Turning next to V-types, consider the following operation.

Definition 4.3 (Action of YV on term-relations) Let 7; and 7{ be PCF™*
types with at most a single free type variable, a say. Suppose R is a function
mapping term-relations r € Rel(7,73) (any 72,75 € Typ) to term-relations
R(r) € Rel(ry[rz/a), Ti[m5/c]). Then we can form a term-relation Vr (R(r)) €
Rel(V o (11),V a (7)) as follows:

10




PirTs

'FIld:7—T
r-S:7 — 1" Y B R
1
T'F So(case —of nil= M; | h::t=> M) : 7 list —o 7" D,h:mt:Tlisth M o7’
i —o 7" F-S:7[r/fa] — 7"
'FS:7 —or FTHA:T [r/a]
PESo(=A):(r=7)—7" IFSo(—7):Va(r') —1"

Fig. 6. Typing frame stacks

(G,G') eVr(R(r) &
V1,75 € Typ (V7 € Rel(my,73) ((G 72, G' 13) € R(r))).

From [33] one might expect the definition of Ay (r,)(7) to be V7 (A, (r, 7)).
This will not do for PCF* because of the presence of fixpoint recursion. For
then we would have Ay, (o) = Vr(r) = 0 (since we can instantiate the pa-
rameter r with the empty relation). But then Ay, (s) cannot coincide with
=.pbs as we desire, because the latter is not empty: from Example 3.3 we have
Q =ps Q2 : Va(a). As this example may indicate, we will have to restrict the
parameterising relations in the definition of Ay, ;) at least to be ‘admissible
for fixpoint induction’, in some way. In domain theory, a subset of a domain
is said to be admissible if it contains the least element of the domain and is
closed under taking least upper bounds of chains in the domain. It is perfectly
possible to make use of a direct, syntactic version of this notion by considering
term-relations that are closed under certain syntactically definable chains and
their limits, e.g. those generated by the finite unfoldings of a fixpoint term, or
by syntactically definable projection functions. See [4] for an example of this
approach to ‘syntactic admissibility’. Here we take a more indirect approach,
already present implicitly in [26]. It enables us to obtain the necessary ad-
missibility properties as a corollary of a construction that we need anyway in
order to build sufficient properties of evaluation into the logical relation for it
to characterise observational congruence. The key idea is to consider relations
between PCF™ evaluation contexts [9]—those contexts M[—] with a single oc-
currence of the placeholder, ‘—’, in the position where the next subexpression
will be evaluated. To aid analysis of the termination relation M | nil;, we
use the following reformulation of evaluation contexts as stacks of ‘evaluation
frames’ (cf. [15] and [26, Sec. 3}).

Definition 4.4 (Frame Stacks) The grammar for PCF™ frame stacks is
Su=Id|SoF
where F' ranges over frames:
F:= (case—ofnil= M |z:z=>M) | (-M) | (-7).
We use the judgement I' - S : 7 —o 7’ to indicate the argument and result

11




PrrTS

type of a frame stack. Here ' is a typing environment, as defined in Sec. 2, and
we assume similar well-formedness conditions as there (free variables and free
type variables of all expressions in the judgement are listed in I'). The axiom
and rules inductively defining this judgement are given in Fig. 6. Unlike PCF*
terms, we have not included explicit type information in the syntax of frame
stacks. For example, Id is not tagged with a type. However, it is not hard to
see that, given I, S, and 7, there is at most one 7/ for which ' =S : 7 —o 7'
holds. This property is enough for our purposes, since the argument type of
a frame stack will always be supplied in any particular situation in which we
use it.

Definition 4.5 Given closed PCF™ types 7,7 € Typ, we write Stack(r,7’)
for the set of frame stacks S for which @ - S : 7 —o 7' is derivable from the
axiom and rules in Fig. 6.

The analogue for frame stacks of the operation of filling the hole of an
evaluation context with a term is given by the operation S, M — SQM, of
applying a frame stack to term. It is defined by induction on the length of the
stack:

HeM ¥ M
(SoF)aM ¥ se(F[M/-))

where F[M/—] is the term that results from replacing ‘—’ by M in the frame
F. Note that if S € Stack(r,7') and M € Term(r), then SQM € Term(7').

Theorem 4.6 (A structural induction principle for termination)
Given a closed PCF* term M of list type, M € Term(t list) say, write M | to
mean that M || nil, is derivable from the aziom and rules for evaluation given
in Fig. 2. Then for all 7,7 € Typ, M € Term(r) and S € Stack(r, ' list) we
have

SaM | & STM

where the relation (=) T (=) is inductively defined by the aziom and rules in
Fig. 7. If S T M holds we say that S and M are coterminate.

The proof of this theorem is quite straightforward and is omitted. Not
only does the — T — relation facilitate inductive proofs involving termination,
but also it is the key to our syntactic treatment of admissibility, as we now
explain. Given a closed PCF* type 7 € Typ, define

Term (1) & U Stack(r, 7’ list).
T eTyp
We write Rel (1, 7) for the set of subsets of Term" () x Term (7) and refer to
such subsets as stack-relations. Using the (—) T (—) relation from Theorem 4.6

we can manufacture a stack-relation from a term-relation and vice versa, as
follows.

12




PirTS

STMl

Id 7 nil,
So(case — of nil=> M, | h::t=>M;) T nil,

‘ ST Ma[H/h, T}4]
So(case — ofnil=>M; |hut=>M) TH:T

ST M[A/z] S T M[r/a]
So(=A)TAz:T(M) So(—7)TAa(M)

So(case — ofnil=> M) |hut=>M;) TL So(-A)TF
S TcaseLofnil= M; | h::t= M, STFA

So(—7)TG  So(—fix(F))TF
STGT S T fix(F)

Fig. 7. PCF* nil-termination relation

Definition 4.7 (The (—)" operation on relations) Given any 7,7’ € Typ
and r € Rel(r,7’) define r7 € Rel (1, 7') by

S,her" EvMM)er(STM &S ™M)
and given any s € Rel " (r,7') define s € Rel(r,7') by
(M, M) es” & V(5,8 es(STM &S TM).

Just from the form of the definition of the operations r +— 77, s+ s' (i.e.
without using any properties of the termination relation (—) T (—)) it is clear
that one has a Galois connection:

(1) r1Cre=(r)" C(r)"

(8) s1Csa=(s2)7 C(s1)"

(9) rCs' esCr'.

So in particular 7 — ' is a closure operator for term-relations, i.e. is order-
preserving, inflationary and idempotent. Thus we say that a term-relation
ris TT-closed if r = r7 T, or equivalently if 7' ' C r, or equivalently if r =
sT for some stack-relation s, or equivalently if 7 = (r')T'7 for some term-
relation 7. Note that the use of (=)' in clause (6) of Fig. 5 means that the
universal quantification over term-relations in the definition of Ay (r)(7) is
being restricted to range over TT-closed relations.

The next result is an indication that TT-closed term-relations have appro-
priate ‘admissibility’ properties.

Theorem 4.8 (Admissibility of TT-closed term-relations)
Suppose v € Rel(t,7') is TT-closed. Then for any F € Term(t — 7) and

13




PirTs

F' € Term(r' — 1') one has
(F,F')er—r = (fix(F),fix(F')) €.

Proof. We use the following

Unwinding Theorem. For any 7 € Typ, F € Term(7—T1), S € Term” (1),

defining fixO (F) © 07 and ix™D(F) € Fax™(F), it is the case that

ST ix(F) & 3IneN(S T ix"(F)).
This result, or rather a slight generalisation of it using fixpoint terms in ar-
bitrary contexts, can be proved by relatively straightforward inductions over
the definition of the (=) T (—) relation. We omit the details (but see for
example [26, Theorem 3.2]).
It is not hard to see that S T Q7 does not hold for any S € Term'(7)

(since evaluation of Q7 never terminates). Thus (Q7,Q7') € s', for any
s € Rel(r,7'). Hence in particular taking s =r', we have

AixO(F), ixO(F)) er' " =1
So if (F, F') € r — r, it follows by induction on n that
(Bix™ (F), ix™ (F")) € r
holds for all n € N. Finally, for any (S,S’) € 77 we have

S 7 fix(F) < 3n € N(S 7 fix™(F)) by the Unwinding Theorem
& In e N(S' T ix™(F)) since (fix™(F), ixM(F")) e r
and (S,8") er’
< S T fix(F) by the Unwinding Theorem.
Thus by definition of (=)T, (fix(F), fix(F)) € r' " =r, as required. O

To complete the explanation of Fig. 5 we have to define the action of the
list type constructor on term-relations.

Definition 4.9 (Action of (—) list on term-relations)
Given 7,7 € Typ, r1 € Rel(r,7') and ry € Rel(r list, 7' list), define 1+ (r; x
r9) € Rel(t list, 7' list) by:

1+ (’l"]_ X 'I'2) d=e£
{(nil;, nil, )} U{(H =« T, H'=T) | (H,H') € 11 & (T, T') € 2}-
Note that the subset relation makes Rel(r list, 7' list) into a complete lattice

and that, for each 7, the function 75 — (1+ (r; X r2)) 7T is monotone. There-
fore we can form its greatest fixed point, v7 ((1 + (r; x 7)) T"). The function

ri € Rel(r,7") v vr((1+4 (r; x7))"") € Rel(r list, ' list)

is the action of (—) list on term-relations used in clause (4) of Fig. 5 to define
A, it in terms of A

14




PrrTS

Remark 4.10 (List bisimulations) When r; is TT-closed, one can give
an alternative characterisation of v7 ((1 + (r; x 7))T") which accords more
closely with the characterisation of observational congruence of lazy lists in
terms of a notion of bisimilarity to be found, for example, in [24, Sec. 3]. Given
r1 € Rel(,7'), call a term-relation ro € Rel(T list, 7' list) an r;-simulation if
it satisfies that whenever (L, L') € 72 then

e if L | nil,, then L' | nil
o if L | H:: T, then for some H' and T" it is the case that L' § H':: T' with
(H,H) € r, and (T, T") € rs.

Say that ry is an r;-bisimulation if both it and its reciprocal relation (r2)° o

{(L, L") | (L', L) € ry} are ry-simulations. Then one can prove that when r;
is TT-closed, vr (1 + (ry X 7))T7) is the greatest ry-bisimulation. (Moreover
we will see next that the r; used in Fig. 5, namely A, (7), is always TT-closed
provided the term-relations 7 are.)

The following properties of TT-closed term-relations will be needed below.

Lemma 4.11(3) If ro is TT-closed, then so is vy — 12, for any r1. If R is as
in Definition 4.3 and each R(r) is TT-closed, then so is Vr (R(r)). Hence
it follows by induction on the structure of PCF™ types T that A.(7) is
TT-closed provided the term-relations 7 are. (The induction step for list
types is automatic, because A, j;u(7) is a term-relation r satisfying r =
(14+A,(F) x7)TT (it is the greatest such) and hence it is always TT-closed.)

(i) Kleene equivalence, =y, is defined by:
Mi=aMy:T EVC(MIC & M| C).
Then if r € Rel(7,7') is a TT-closed term-relation, one has
M1 =kl Mz T & (Ml,M{) cr & M{ =kl Mr_ﬁ . T’ = (Mz,Mé) S
Fig. 5 defines a family of binary relations between closed terms. We extend

this to a relation between open terms, of the form considered in Definition 3.1,
by considering closing substitutions.

Definition 4.12 (Logical relation on open terms) Suppose ' M : 7

and'HM':7hold, withT' =ay,...,ap, :71,...,2 : T, say. Write

(10) 'FMAM :7

to mean:
given any o;,0) € Typ and r; € Rel(o;,0}) (for ¢ = 1,...,m) with each r;
TT-closed, then for any (N;, Nj) € A (7) (for j = 1,...,n) it is the case
that (M[&/d, N/z], M'[¢'/&, N'/Z]) € A,(7)

(The restriction to TT-closed relations in this definition accords with the def-

inition of A at V-types.)

15




PiTTS

Theorem 4.13 (Fundamental properties of the logical relation)
With A extended to open terms as in the previous definition, we have:

(i) A is compatible (cf. Definition 3.1(i)).
(ii) For each closed type T € Typ we have
(M,M)e A, and (S,S)€(A,)T
for all closed terms M € Term(r) and frame stacks S € Term™ (7).
(iii) A is substitutive (cf. Definition 3.1(i)).

Proof. For part (i), one has to prove that (10) is closed under the axioms
and rules in Fig. 3. Most of these compatibility properties are immediate
consequences of the definition of A in Fig. 5 and the way it is extended to
open terms in Definition 4.12. However, those for case, Az : 7(—), and
A a(—) require Lemma 4.11 together with the following Kleene equivalences:
Az :7m (M)A =g M[A/z]: 7
(Aa(M))1 =4 Mlr/a): niln/d]
casenil,, of nil= M; | h:t=> M = My : 7y
case H ::Tofnil= M, | h:t= M, =g My[H/h,T/t]: 5.
The compatibility condition for fix follows from Theorem 4.8 (together with
Lemma 4.11(i)).

Part (ii) follows from part (i). Since the relation (10) is compatible, it is
automatically reflexive and hence in particular (M, M) € A, holds. The fact
that one also has (S,S) € (A;)T can be proved by induction on the structure
of S, using compatibility properties that form part of the proof of part (i).

For part (iii), one has to prove that the relation (10) is closed under the ax-
ioms and rules in Fig. 4. The type-substitutivity property reduces to showing
for open types 7(@, ) and 7'(&) that A/ (7) = AL (7, A (7)), for any 7
This follows easily from the definition in Fig. 5, by induction on the structure
of 7. Finally, the term-substitutivity property in Fig. 4 is an easy conse-
quence of Definition 4.12 together with the previously established fact that
the relation (10) is reflexive. O

The following lemma will help us to compare the logical relation with
observational congruence.

Lemma 4.14(i) If M =4 M' : 7, then for any S € Term' (r), S T M holds
if and only if S T M’ does.
(ii) Suppose r € Rel(r,7') is TT-closed. Then
My =gps My : 7 & (M1, M}) € 7 & M| =gps My : 7' = (M, My) € 7.
(iii) A is adequate (cf. Definition 3.1(iii)).
Proof. Recall that by definition =g is the largest compatible, substitutive,

and adequate relation. Note that the compatibility properties of =45 imply
that SQM =g, SQM' : _list holds if M =, M' : 7 does. Therefore the

16




PrrTs

adequacy of =.ps together with Theorem 4.6 give (i). Part (ii) follows from
(i) and the assumption that r =777.

For part (iii), note that by Theorem 4.13(ii), for each 7 € Typ we have
that (Id, Id) € (A, yst)T. Thus if @ - MAM' : 7 list, i.e. if (M, M') € Arjist,
then Id T M < Id T M’, and hence by Theorem 4.6, M | nil, & M’ | nil,,
as required for adequacy. a

Theorem 4.15 Given ' M : 7 and T - M' : 7, M and M’ are observa-
tionally congruent if and only if they are logically related:

(11) TF-M=pM:7T & TFMAM :71.

Proof. Combining Lemma 4.11(i), Definition 4.12 and Lemma 4.14(ii), we
have

CHM =gps Moy:7 & THFMAM, :7 & T'F M| =gos My: 7' =
TFM,AM,:T.

Since =ops and A are reflexive (the former by construction, the latter by
Theorem 4.13), we can take M; = M} = M, = M and M, = M’ in (12) to
deduce the left-to-right implication in (11).

For the converse implication, first note that the compatibility and substi-
tutivity properties of A (Theorem 4.13) imply that the equivalence relation it
generates, (A U A%)*, is a PCF* congruence relation (cf. the proof of Theo-
rem 3.2). Moreover, (A U A%)* is adequate, because A is (Lemma 4.14(iii)).
Therefore (AU AP)* is contained in the largest adequate congruence relation,
=obs, and hence so is A. ]

5 Applications of Theorem 4.15

We give two kinds of application: some general results about PCF* observa-
tional congruence (such as a ‘ciu’ theorem and extensionality properties) and
some properties of particular PCF™ types up to =os (Examples 3.3-3.5).

5.1 A PCF™ ‘ciu’ theorem

Let us begin with a version of the ‘closed instantiations of uses’ (ciu) theorem
of Mason and Talcott [22]. It is convenient to split this into two parts, to
do with ‘instantiations’ and with ‘uses’ respectively. The first part reduces
observational congruence of open terms to that of closed terms (of closed
type), via closed substitution instances (which for PCF'* involves substitutions
both of types and terms). Then the second part permits us to check the
observational congruence of two closed terms by considering their termination
behaviour just in evaluation contexts (of list type). Here we will replace
evaluation contexts by the equivalent notion of frame stacks (Definition 4.4)
and use the characterisation of termination given by Theorem 4.6.

17




PirTs

Theorem 5.1 (PCF™ ‘ciu’ theorem) For each closed type T € Typ, define
a binary relation on Term(r) by

(12) M =g M7 & VS € Stack(r, _list) (STM & STM).

Then given THM :7 andTH M 7, withT' = o1,...,0m, T:71,..., T Ty
say, we write
'-M =ciu M :7
to mean that for all o; € Typ (i = 1,...,m) and all N; € Term(7;(3/d])
(i =1,...,n), it is the case that M|3/&, N/Z] =cu M'[G/&, N /7] : T[5/al].
Then =y coincides with PCF™ observational congruence:
I'FM=gM:7 & TFEM=qusM:T

Proof. The fact that = is contained in =, follows immediately from the
fact that =g is, by definition, an adequate PCF™ congruence relation.

For the converse implication, by Theorem 4.15, it suffices to show that =,
is contained in A. But it is evident from (12) that any TT-closed term-relation
respects =, and hence (by Definition 4.12) that

THFM =guMy:7 & TEFMAM]:7 & T M| =g, My : 7" =
C+MyAM,:T.
Since it is clear from its definition that =, is reflexive, and since A is reflexive

by Theorem 4.13, we can take M; = M| = My = M and M, = M’ to deduce
that

'FM=xuM:7T=>TF+FMAM :1

as required. O

Fig. 8 gives some basic properties of =, (for simplicity, stated just for
closed terms). All except (vii) are more or less immediate consequences of
Theorem 5.1. Property (vii) gives a coinductive characterisation of observa-
tional congruence of lazy lists (cf. [24], for example). It follows by combining
Theorem 4.15 with Remark 4.10. An example of its use occurs in the proof of
Example 3.5 (see Sec. 5.5).

We turn next to the proofs of the properties of null, unit, and list types
claimed in Examples 3.3-3.5.

5.2 Proof of Example 3.3

Suppose G is a closed term of type null “va (c). We have to show that
G =obs  : null, where @ & Ao (Bx(Az : o (2))).

By properties (ii) and (vi) in Fig. 8, it suffices to show for all 7 € Typ
that G T =ops fix(Az : 7 ()) : 7. For this it suffices, by Theorem 5.1, to show
for all S € Term'(r) that S T (G7) does not hold, because evaluation of
fix(Az : 7 (z)) does not converge.

18




PIiTTS

Beta-conversions
() Az:m (M)A =os M[A/z]: 72
(i) (Aa(M)) T2 =obs M[r2/a]: ni[r2/0]

(iii) (casenil,, of nil= My | h:t=>M3) =obs M1: 72
(case H :: Tof nil = M; | h:t=> Ms) =ops Ma[H/h,T/t]: 7.

(iv) ix(F) =obs Ffix(F):7.
Extensionality properties
(v) F =¢bs F' : 7y = 72 if and only if for all 4 € Term(m1), F A =ops F' A: 72.
(vi) G =obs G' € Va(r1) if and only if for all 72 € Typ, G T2 =obs G' 1y : mi[r2/al.
(vii) L =obs L' : 7 list if and only if (L,L') € r for some r € Rel(r list, 7 list) satisfying that
whenever (M, M') € r then
- M § nil, if and only if M’ | nil,
.if M Y H:T,then L' § H'::T' for some H' and T' with H =ps H' : 7 and (T, T") € T
- if M'§ H'::T', then L § H :: T for some H and T with H =ops H' : 7 and (T,T") € 7.
Eta-conversions
(vill)) F =ops Az :7(Fz):11 =7 (where = ¢ fu(F)).
(ix) G =obs Aa(Ga):Va(r) (where a ¢ ftv(Q)).
(X) Q(71 = 72) =obs Az : 71 (272)  (where @ & Aa (fix(Az : a (2))))-
(xi) R(Va(r)) =obs A (7).

Fig. 8. Some basic properties of PCF* observational congruence

From Theorem 4.13(ii) we have (G,G) € Avq(e) = Vr(r'"). In other
words, for all 7,7’ € Typ and r € Rel(r,7') we have

(13) (Gr,G7)er™ .
Given 7, we use (13) with 7/ = 7 list and 7 the one-element term-relation
r ¥ {(@Qr, Q(rlist))}.
For any S € Term' (1), let S’ € Term (7 list) be a frame stack that diverges
when applied to any term of type 7 list, say
S' ¥ Ido(case — of nil= Q (7 list) | h::t=>Q (7 list)).

Now neither S T (27) nor S’ T (Q (7 list)) hold, because of the divergence
properties of . Therefore by definition of r, we have (S, S’) € r'. Combining
this with (13) yields S T (G71) & S’ 7 (G 7 list). But S’ was chosen so that
S’ 7 L does not hold for any L € Term(r list). Therefore S T (G 7) does not
hold either, as required. O

5.8 A graph lemma

In order to prove Examples 3.4 and 3.5 we use the following source of TT-closed
term-relations.

19




PirTs

Lemma 5.2 (Graphs of frame stacks are TT-closed)
For each S € Stack(t, ') the term-relation graphg € Rel(r,7') defined by
graphg & {(M,M") | SQM =s M' : T'}.

is TT-closed. (The definition of the application operation —Q— was given just
after Definition 4.5.)
Proof. We have to show that (graphg)’' C graphg. Note that by Theo-
rem 4.15
(14) gra'phS = {(M) M’) | (S@Ma M’) € A‘l"}'

If S’ 0 S denotes the result of appending the frames in S to a frame stack
S', then an induction on the length of S yields
(15) (S'oS)TM & S T(SQM).
From (14) and (15) we get

(S',8") € (A)T = (S'08,S") € (graphs) "
and hence that
(N, N') € (graphg)"T = (SQN,N") € (A)TT.

But by Lemma 4.11(i), (A)TT = A,. Therefore if (N, N') € (graphg)™",
then (S@QN, N') € A, and hence (N, N') € graphg, as required. O

5.4 Proof of Example 3.4

Suppose G is a closed term of type unit 4 Va(a — a). In view of the
properties of =g given in Fig. 8, to establish the claim in this example it
suffices to show for all 7 € Typ and M € Term(7) that either

(16) GTM =g Q77T
or
a7 GTM =gs M:T.

Given 7 € Typ and M € Term(7), let S € Stack(unit list, T) be the frame
stack

s« Id o (case — of nil=> M | h::t=>M)

and consider graphg € Rel(unit list,) as in Lemma 5.2. By Theorem 4.13(ii)
we have (G,G) € Aynig =V (r'T —=r'7). So since by Lemma 5.2 graphg is
TT-closed, we have
(18) (G unit list, G T) € graphg — graphg.
By property (iii) in Fig. 8, we have (nilyni, M) € graphg. Therefore from (18)
we get that (G unit list nily,:, G ™ M) € graphg, i.e. that
(19) case (G unit list nilypy) of nil=> M | hut=>M =g GTM : T
Now either G unit list nil,,;; {4 C for some C, or not. In the first case we get

case (G unit list nilyp) of nil=> M |ht=>M =gy M: 7

20




PrrTsS

and in the second we get
case (G unit list nil,py) of nil=> M | At =>M =g, Q7:7.

Then by Theorem 5.1 and (19), the first possibility yields (17), whereas the
second yields (16). O

5.5 Proof of Example 3.5
Let L(a), I and J be as defined in Example 3.5. By the results in Sec. 5.1, to
prove

a,:alistkFJa(Ial)=.s?: alist

a, g:L{a)FTa(Jag) =csg: L(c)
it suffices to show for all 7 € Typ, L € Term(r list), and G € Term(L(T))
that
(20) JT(ITL) =gbs L:7list

and

IT(JTQ) =obs G:L(7).

For the latter, in view of the definition of L(7) it suffices to show for all
7' € Typ, M' € Term(r'), and F € Term(r — 7' — 7') that
(21) IT(JTG)TM'F =45 GT'M'F: 7.

We tackle (20) first. Applying the beta-conversion properties in Fig. 8 to
the definitions of I and J yields
(22) ITLT M'F =q caseLofnil=>M' |h:t=Fh(ITt7 M'F):7list
(for all L, M', and F of appropriate type) and then
(23) J7(ITL) =os caseLofnil=>nil, | h::t=>h= (J7(IT1)): 7 list.
From (23) it follows that r © (M, M) | M =g J 7 (IT M) : 7 list} satisfies
the bisimulation conditions in property (vii) of Fig. 8 and hence is contained
in =qps. Since (J7 (I 7L),L) € r, we have (20).

Turning to the proof of (21), consider the frame stack S € Stack(r list, ")
defined by

S ¥ Ido(case — of nil=> M’ | h::t= (Fh) (ITt7 M'F)).
In view of (22), we have SQL =qps I 7 L' M' F : 7 list and therefore
raer L {(L,M") | IT L7 M'F =g M" : 7 list}

is a TT-closed member of Rel(r list,7') by Lemma 5.2. So for each G €
Term(L(r)), since

(G,G) € Ay =Vr(r = (A, =1 7)) = r'T)
we have that

(GTlist,GT') € s = (A7 = Taerp = T p) = Tarr F-

21




PirTs

Vanilla PCF
(call-by-name evaluation; termination at function types is not observable)

Arisms(®) = Br, () = Ary(7)
where in general

r—=rs & ((FF)|V(4,A) er (FAF A)er)}

‘Lazy’ PCF
(call-by-name evaluation; termination at function types is observable)

Arosr (@) QAL A (A @)TT
where in general
Ar () € {Qz:im (M), z:m (M) |
V(4,A") er (M[A/z], M'[A'[z]) € T2)}.

Call-by-value PCF
(call-by-value evaluation; hence termination at function types is necessarily observable)

Aryosr (M) O A () (A (™)) T
where in general
Aor(r2) € {Oz:im (M), Az : 7 (M) |
V(C,C") € r; with C,C’ canonical (M[C/z], M'[C’[x]) € r2)}.

Fig. 9. Some actions of — on term-relations

From (22) and the definition of ray r we get that N def Aa(nil,) and C def

Aa(Mh:a(\t: alist (h::t))) satisfy
(NT,M') € rppr ¢ and (Cr,F)e A, > rypp—=TMF
and hence
(Grlist(NT)(C1), GT'M'F) € ppr .

Therefore I 7(G 7 list (NT) (C 7)) 7 M' F =45 G7' M’ F : 7', from which (21)
follows by definition of J. O

6 Conclusion

Notions of contextual equivalence of programs have a final, as opposed to ini-
tial, character—in that program phrases are identified as much as possible
within some observational framework. Therefore it is reasonable to expect V-
types to have strong parametricity properties with respect to such a notion of
equivalence. The unpublished work of Mitchell and Moggi on the maximally
consistent model of PLC vindicates this expectation, and the work presented
here provides further evidence, this time in a context more directly relevant
to functional programming. It seems that in the presence of fixpoints, poly-

22




PrrTs

morphic types have very rich properties up to contextual equivalence and that
operationally-based logical relations provide a convenient way of proving these
properties. The applications in the previous section are certainly just a small
selection of the results which can be proved using the machinery of Sec. 4.
The Galois connection (—)T between term-relations and stack-relations (Def-
inition 4.7) seems the most interesting ingredient of that machinery. One of
its roles is to tie the operational semantics into the logical relation. This idea
is reinforced in Fig. 9, where we mention some alternative actions of — on
term-relations (cf. Definition 4.2) which fit contextual equivalence for ‘lazy’
and call-by-value PCF. (Of course in each case, the definition of — T — and
hence of (—)TT, changes to match the changed operational semantics and/or
observational scenario; and in the second case the notion of frame stack is
different as well.)

As mentioned in Sec. 4, another role of the (=) operation is to provide a
syntactic version of the domain-theoretic notion of admissibility. The recent
upsurge in operational techniques in the semantics of higher order program-
ming languages has been fuelled to a certain extent by developing syntactical
versions of domain-theoretic methods (see [21,4] for example). Here it may be
interesting to go in the opposite direction. The Galois connection (=)T arose
from purely operational considerations (in fact, as a way of dealing with dy-
namic allocation of local state in the logical relation introduced in [26]); but it
may be useful to use a denotational version of (—) ' for ‘extensional collapses’
when constructing models of polymorphism and recursion. Denotationally,
strict continuous functions play the role of frame stacks (evaluation contexts).
So given domains D and D', we may consider the evident Galois connection
between relations R C D x D’ and relations S C (D —o I) X (D" —o I') induced
by

Ffrd¥ fa)=T

where I = {1, T} is the two-element domain with L € T and D —o I denotes
the usual domain of strict continuous functions from D to I. It would be
interesting, and possibly useful, to have a more explicit characterisation of
what are the TT-closed relations in this sense.

The particular type system of PCFT was chosen merely to be able to
state and prove Example 3.5. I believe that the techniques presented in this
paper will extend quite smoothly to show operational isomorphisms between
appropriate pure PLC types and other type-theoretic notions important to
programming language theory, such as recursive types. One direction which
will be pursued in future work is the combination of V-types with intuition-
istic linear types (! and —o types). Plotkin [29] has pointed out that in the
presence of fixpoints, and with relational parametricity, this system provides a

4 One thing is clear: such a TT-closed relation on D x D' is in general something more
than just a chain-closed and bottom-containing relation; thanks to Glynn Winskel (private
communication) for pointing this out.

23




PiTTS

very expressive denotational metalanguage. Equipping the type system with
a suitable operational semantics and associated notion of observational con-
gruence, techniques similar to the ones introduced here should provide a term-
model construction for the formal version of parametricity that Plotkin had
in mind for this system. Another interesting direction (from the point of
view of the foundations of object-oriented programming) would be to define
operationally-based logical relations for combinations of subtyping, existential
polymorphism, and recursion (cf. {31]).

References

[1] M. Abadi, L. Cardelli, and P.-L. Curien. Formal parametric polymorphism.
Theoretical Computer Science, 121:9-58, 1993.

[2] M. Abadi and G. D. Plotkin. A per model of polymorphism and recursive types.
In 5th Annual Symposium on Logic in Computer Science, pages 355-365. IEEE
Computer Society Press, Washington, 1990.

[3] E. S. Bainbridge, P. J. Freyd, A. Scedrov, and P. J. Scott. Functorial
polymorphism. Theoretical Computer Science, 70:35-64, 1990. Corrigendum
in 71:431, 1990.

[4] L. Birkedal and R. Harper. Relational interpretation of recursive types in an
operational setting (Summary). In Proc. TACS’97, Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 1997. To appear.

[5] C. Bohm and A. Berarducci. Automatic synthesis of typed A-programs on term
algebras. Theoretical Computer Science, 39:135-154, 1985.

[6] L. Cardelli. Type systems. In CRC Handbook of Computer Science and
Engineering, chapter 103, pages 2208-2236. CRC Press, 1997.

[7] T. Coquand, C. A. Gunter, and G. Winskel. DI-domains as a model of
polymorphism. In M. Main, A. Melton, M. Mislove, and D. Schmidt, editors,
Mathematical Foundations of Programming Language Semantics, volume 298
of Lecture Notes in Computer Science, pages 344-363. Springer-Verlag, Berlin,
April 1987.

[8] T. Coquand, C. A. Gunter, and G. Winskel. Domain theoretic models of
polymorphism. Information and Computation, 81:123-167, 1989.

[9] M. Felleisen and R. Hieb. The revised report on the syntactic theories of
sequential control and state. Theoretical Computer Science, 103:235-271, 1992.

[10] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans
Parithmetique d’ordre supérieur. PhD thesis, Université Paris VII, 1972. These
de doctorat d’état.

[11] J.-Y. Girard. Proofs and Types. Cambridge University Press, 1989. Translated
and with appendices by Y. Lafont and P. Taylor.

24




PiTTS

[12] A. D. Gordon. Operational equivalencés for untyped and polymorphic object
calculi. In Gordon and Pitts [13], pages 9-54.

[13] A. D. Gordon and A. M. Pitts, editors. Higher Order Operational Techniques in
Semantics. Publications of the Newton Institute. Cambridge University Press,
1998.

[14] R. Harper and M. Lillibridge. Explicit polymorphism and CPS conversion. In
20th SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 206-219. ACM Press, January 1993.

[15] R. Harper and C. Stone. A type-theoretic account of Standard ML 1996
(version 2). Technical Report CMU-CS-96-136R, Carnegie Mellon University,
Pittsburgh, PA, September 1996.

[16] R. Hasegawa. Parametricity of extensionally collapsed term models of
polymorphism and their categorical properties. In T. Ito and A. R. Meyer,
editors, Theoretical Aspects of Computer Software, volume 526 of Lecture Notes
in Computer Science, pages 495-512. Springer-Verlag, Berlin, 1991.

[17] R. Hasegawa. Categorical data types in parametric polymorphism.
Mathematical Structures in Computer Science, 4:71-110, 1994.

[18] S. B. Lassen. Relational reasoning about contexts. In Gordon and Pitts [13],
pages 91-135.

[19] S. B. Lassen. Relational Reasoning about Functions and Nondeterminism. PhD
thesis, Department of Computer Science, University of Aarhus, 1998.

[20] Q. Ma and J. C. Reynolds. Types, abstraction, and parametric polymorphism, -
part 2. In S. Brookes, M. Main, A. Melton, M. Mislove, and D. A. Schmidt,
editors, Mathematical Foundations of Programming Semantics, Proceedings
1991, volume 598 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, 1992.

[21] I. A. Mason, S. F. Smith, and C. L. Talcott. From operational semantics to
domain theory. Information and Computation, 128(1):26-47, 1996.

[22] I. A. Mason and C. L. Talcott. Equivalence in functional languages with effects.
Journal of Functional Programming, 1:287-327, 1991.

[23] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed
assembly language. In 25rd SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages -7 ACM Press, January 1998.

[24] A. M. Pitts. Operationally-based theories of program equivalence. In P. Dybjer
and A. M. Pitts, editors, Semantics and Logics of Computation, Publications
of the Newton Institute, pages 241-298. Cambridge University Press, 1997.

[25] A. M. Pitts. Reasoning about local variables with operationally-based logical
relations. In P. W. O’Hearn and R. D. Tennent, editors, Algol-Like Languages,
volume 2, chapter 17, pages 173-193. Birkhauser, 1997. First appeared in
Proceedings 11th Annual IEEE Symposium on Logic in Computer Science,
Brunswick, NJ, July 1996, pp 152-163.

25




PrTTs

[26] A. M. Pitts and I. D. B. Stark. Operational reasoning for functions with local
state. In Gordon and Pitts [13], pages 227-273.

[27] G. D. Plotkin. Lambda-definability and logical relations. Memorandum SAI-
RM-4, School of Artificial Intelligence, University of Edinburgh, October 1973.

[28] G. D. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5:223-255, 1977.

[29] G. D. Plotkin. Second order type theory and recursion. Notes for a talk at the
Scott Fest, February 1993.

[30] G. D. Plotkin and M. Abadi. A logic for parametric polymorphism. In
M. Bezem and J. F. Groote, editors, Typed Lambda Calculus and Applications,
volume 664 of Lecture Notes in Computer Science, pages 361-375. Springer-
Verlag, 1993.

[31] G. D. Plotkin, M. Abadi, and L. Cardelli. Subtyping and parametricity. In
9th Annual Symposium on Logic in Computer Science, pages 310-319. IEEE
Computer Society Press, Washington, 1994.

[32] J. C. Reynolds. Towards a theory of type structure. In Paris Colloguium on
Programming, volume 19 of Lecture Notes in Computer Science, pages 408-425.
Springer-Verlag, Berlin, 1974.

[33] J. C. Reynolds. Types, abstraction and parametric polymorphism. In R. E. A.
Mason, editor, Information Processing 83, pages 513-523. North-Holland,
Amsterdam, 1983.

[34] J. C. Reynolds and G. D. Plotkin. On functors expressible in the polymorphic
typed lambda calculus. Information and Computation, 105:1-29, 1993.

[35] P. Wadler. Theorems for free! In Fourth International Conference on
Functional Programming Languages and Computer Architecture, London, UK,
September 1989.

[36] J. B. Wells. Typability and type-checking in the second-order A-calculus are
equivalent and undecidable. In Proceedings, 9th Annual IEEE Symposium on
Logic in Computer Science, pages 176-185, Paris, France, 1994. IEEE Computer
Society Press.

26




Electronic Notes in Theoretical Computer Science 10 (1998)
URL: http://www.elsevier.nl/locate/entcs/volumel0.html 22 pages

Operational Subsumption, an Ideal Model of
Subtyping

Laurent Dami!

Centre Universitaire d’Informatique
Université de Genéve
Genéve, Switzerland

Abstract

In a previous paper we have defined a semantic preorder called operational subsump-
tion, which compares terms according to their error generation behaviour. Here we
apply this abstract framework to a concrete language, namely the Abadi-Cardelli
object calculus. Unlike most semantic studies of objects, which deal with typed
equalities and therefore require explicitly typed languages, we start here from a un-
typed world. Type inference is introduced in a second step, together with an ideal
model of types and subtyping. We show how this approach flexibly accommodates
for several variants, and finally propose a novel semantic interpretation of structural
subtyping as embedding-projection pairs.

1 Introduction

In a previous paper [10] we have defined a semantic preorder called opera-
tional subsumption, which compares terms according to their error genera-
tion behaviour. Together with the technical device of labeled reductions, used
as a syntactic characterization of finite approximations, this semantics was
shown to adequately interpret recursive types and subtyping. In this paper
we apply this approach to FOb, the lambda-calculus of objects of Abadi and
Cardelli [2]. Because we work with a concrete language instead of an abstract
framework, several steps can be simplified, so the resulting semantic struc-
ture is intuitively quite obvious. Moreover, a “context lemma” in the untyped
language gives us a simple induction principle for proving many properties
of types. The goal is to show that the “Coverage of Operational Semantics”
[21] can be widened to also deal with subtyping systems. More concretely, we

! work partially supported by Swiss SPP grant 5003-045332 and FNRS grant 2000-
047181.96

(© 1998 Published by Elsevier Science B. V.




DaMi

show several directions where this approach can simplify or deepen previous
results.

First, we give an interpretation of second-order bounded quantification for
universal and existential types. This extends previous work on ideal mod-
els [18] with subtyping. Furthermore it answers to Abadi et al [3], who won-
dered whether their approach would apply to a suitable notion of operational
ideals: this is exactly what is done here.

Then we have a direct way of interpreting typed equivalences of object-
calculi (equivalences which depend on the type context in which objects are
considered). Gordon and Rees [11] used the coinduction principle of Howe [14]
to interpret these equivalences; however this required a heavy apparatus which
switches between typed and untyped worlds: in addition to the reduction
relation they had to define a labeled transition system and a “compatible
refinement” relation. By contrast our interpretation is based on the untyped
reduction relation. Moreover we can validate second-order typed equivalences,
which remained an open issue in [11].

Finally we give a semantic interpretation of structural subtyping, which is
useful for solving the problem known as “polymorphic object update”. Bruce
and Longo [7] have demonstrated that in usual interpretations of subtypes as
subsets the polymorphic type VX < T.X — X can only contain the identity
function, which makes it impossible to type some elementary updating op-
erations on objects. The problem is developed in more detail in Chapter 16
of [2]. Some authors [13,20] have proposed to solve the problem by restrict-
ing the subtype relation in various ways so as to ensure that the subtypes
have the same structure as the supertype. Here we show that usual subtyping
and structural subtyping are two distinct notions semantically. The former
corresponds to a subset relation, while the second corresponds to embedding-
projection pairs in the subsumption ordering. Both subtyping notions can
cohabit and could be included in the type syntax if so desired.

2 The untyped object calculus

The syntax shown in Figure 1 is built from the set w of natural numbers, from
a countable set N of names (for object fields) and a set X' of variables. ¢ is a
constant for errors. The main difference from [2] is that terms are labeled, i.e.
decorated at each subterm with a natural number or co. Here the purpose of
labels is merely to introduce a notion of finite projection for interpreting re-
cursive types. In [10] we also used labels for an abstract definition of erroneous
terms; this is not needed here, since we work in a concrete calculus for which
the erroneous terms are just those which reduce to the error constant. Intu-
itively, each label acts as a counter limiting the number of interaction steps
between the corresponding subterm and its context. When a label reaches
0, it becomes a divergent term, with which no interaction is possible. The
infinite label co imposes no limit, so for better readability it will usually be

2




Dami

(indexes) 14,7,k € w
(labels) n,m € wU {oo}
(names) LI'e N

(variables) z,y,z € X

(terms) a,beT == z2™|e"|a"|(Az.a)"|(ab)|

Ui = ¢z.a"'1" | (a.))" | (a&=l = sz.b)"

(hnf) heH == z"t!|(ha)™t| (R | (h&l = cz.b)H
(values) veV u= h|Qz.a)"| ([ =cz.a, 1)+ | ent?
Fig. 1. Syntax

omitted. In consequence there is an obvious embedding of usual, unlabeled
terms into labeled terms by decorating each subterm with co. Furthermore
oo is considered the successor of itself, so by abuse of notation a superscript
n + 1 may denote oo, in which case n also equals oco.

Like in the lazy A-calculus, every function or object is a value if its label
is > 0; furthermore open terms in head normal form (i.e. starting with a
free variable) are also values. Finally, notice that ¢ is a value, which is a bit
uncommon, but is an essential point of the approach.

We adopt common conventions for simplifying notation: Azy.a for Az.)\y.a,
(abe) for ((ab)c). In an object [l; = ¢x.a;"¢'] it is implicitly understood that
the order of methods is irrelevant, and that for ¢, j € I,1; # l; whenever i # j.
A similar convention will be used for types in Section 4. A method [ = @ in an
object is an abbreviation for | = ¢z.a, where z does not occur free in a; in that
case it is called a field. Some common terms are I = Az.z, K = Azy.y,} =
(Az.zz)(Az.Tx). A contest C[—] is a term possibly containing occurrences of
a “hole”; Cla] is the term obtained by filling the holes with a, with possible
variable capture. A substitution o is a finite map from variables to terms; ao
is the term obtained by substituting free occurrences of z in a by o(z), while
avoiding variable capture; a single substitution is written a[z := b]. The sets
T° and V¢ are respectively the closed terms and the closed values. A closing
substitution for a is a o such that ao € T°. The set 7" is the set of terms
with outermost label less or equal to n.

The one-step reduction relation — is the least relation satisfying the rules
in Figure 2. Labels and errors are the two unusual factors in these rules.
Labels are decremented at each step where a term is “deconstructed”; in case
n+1=n = 00, i.e. when the counter is infinite, the rules just become the
usual rules for reduction of functions and objects. Errors are a way to avoid

3




DaAMI

(AB) (Az.a)"*tb — (a[z := b])"
(Ao) (Az.a)**tl — "

(Av) (Az.a)" &=l =gzb — €™

(00) [l; = ¢x.0; "1™ 0 —

(ajlz == [l = sz.a, "I ifjel
€™ otherwise

(ov) [ =¢x.0, 1"l = czb — [I; = cz.a;" €™M} lj =cz.b]1"

(0B) [l; = ¢x.a;"1"* b — &m

(eB) ("l a) — "

(e0) gmtll — en

(ev) e"tlel =czb — e

(Xe) (Az.gm)ntl — glmin(mn)
(°) a® — Q

) (@)~ qrintn

(cong) a—b = VC[-],Cla] — Cb|

Fig. 2. Reduction rules

so-called “stuck terms” in the literature: instead of having terms which do
not reduce but are not values, we explicitly reduce them to the error constant.
Once generated, errors are always propagated further in the computation, i.e.
there is no exception handling construct; however, since this is a call-by-name
calculus, a context may discard an error in the same way that it would discard
a divergent subterm: for example Ke reduces to I.

The ()e) rule is an ad hoc rule which allows us to greatly simplify the
abstract framework of [10]: instead of observing “ability to interact” we will
just observe reduction to €. Intuitively the rule is motivated by the fact that
a function containing £ can do nothing “useful” and therefore is equivalent to
€. By contrast, there is no such rule for objects, because a method containing
¢ can always be overridden.

In this untyped calculus the & operator can not only override existing
methods, but also add new methods, which is more liberal than in [2]. This is
a deliberate choice, so that the same calculus can be used to interpret various
type systems. In the next section we start with the type system of [2], in
which only override can be well-typed; later we extend it with the system of
[17] which also supports method extension.

4




DamMi

The k-transitive closure of — is written —, its reflexive, transitive closure
is written —, and the symmetric closure of = is written =,

Theorem 2.1 (Confluence) The language is confluent: whenever a — b
and a — ¢ there is a d such that b > d and ¢ = d.

Proof. Standard Tait technique using parallel reductions; see for example
22,9]. O
Definition 2.2 [Convergence]

A term a converges (a {}) iff v € V,a = v. Otherwise a diverges (a 1).

3 Operational Subsumption

The idea of operational subsumption is a simulation relation based on obser-
vation of errors. In the abstract framework of [10] we had to build a complex
machinery in order to define the notion of “erroneous terms”. Here this can be
much simpler: like in [9], we have a rule (Ae) which removes a A-abstraction
if its body is an error; this rule is admissible because it does not break con-
fluence (Theorem 2.1 above). As a result it suffices to observe reductions to ¢
as a basis for subsumption.

Definition 3.1 [Error terms]
ot <= 3n,a > ™
& will denote the set {a | af} of error terms.

Definition 3.2 [Contextual subsumption]
A term a conteztually subsumes another term b, written a E%* b, iff it
generates fewer errors in all program contexts:

0 B b = VO[-],Clat = C[blt

Subsumption is a lattice with bottom 2 and top . The symmetric closure
of £ is written =.

Lemma 3.3 Subsumption contains reduction
ab = a=bh
Proof. Direct from definition, knowing that the language is confluent. O

For convenience of proofs it is useful to establish a “context lemma” which
allows us to only inspect a restricted set of contexts.

Definition 3.4 An applicative context R[—] is a closed context generated by
the following syntax:

R[-] == [-]"[(R[-]a)" | (R[-]D™ | (R[]l = sz.0)"
Definition 3.5 Applicative subsumption is the relation defined as
a B! b < Vo,VR[-|, Rlac]t = Rbo]t

5




Dami

Lemma 3.6 (i) Az.a E®" b => bt V(b > Azt Aa PP Y)

(i) a = [l = c2.0;"1 B2 b = bt V(b [l =cz.b],J CIAVj€
J,a;[z = a] E%PP! bj[z := b))

Proof.

(i) Since (Az.a).lt and ((Az.a)&l = ¢z.c)f, b cannot reduce to an object. So
either bf, or b = Az.b'. Then R[a[z := c]] E®P! R[V/[z := ]| for every
R[-], ¢, which implies a E' b'.

(ii) Similar reasoning.

Theorem 3.7 (“Ciu”, context lemma)
a Ect:vt b — a Eappl b

Proof. The = direction is trivial, since applicative contexts are contexts.
The difficult part is the <= direction. We proceed by induction on the length
of the proof of C[a]f, i.e. we will show

Vi, VO[], ((Cla) 5 ™*1) A (a &' b)) = CIb]f

The case i = 0 is trivial because then C[—] is the empty context and both a
and b are errors. If i > 0 and the first reduction step occurs either in C[—]
or in a, i.e. if C[a] — C'[a'] with either C[-] — C'[-] or a — a’, then we
can directly use the induction hypothesis. Finally we can also ignore the cases
where bf, which again are trivial. So we are left with the following cases:

» cases (v), (v°): easy, a similar step can be performed with C[b] and then we
can appeal to the induction hypothesis.

o cases (¢8), (€0), (ev): easy again because both a and b must be error terms.

« cases (A\g), (Av), (0B): these are the cases which generate an error. By the
preceding Lemma a similar step can be performed with C[b] and then the
result follows 